
Manual for the latex-maven-plugin
and for an according ant-task

Version 2.1

Ernst Reissner (rei3ner@arcor.de)

April 5, 2025

2

Contents

List of Figures 7

List of Tables 9

List of Listings 11

1 Introduction 13

2 Installation 15
2.1 Prerequisites . 15
2.2 Setting up pom.xml for the maven plugin 20

2.2.1 Basic setup . 20
2.2.2 Deviating from default settings 20
2.2.3 Executions . 22

2.3 Setting build.xml for the ant task 23
2.4 Installation from source . 25

3 Usage of Plugin and Task 27
3.1 The source files and their directories 27

3.1.1 LATEX main files and other latex files 28
3.1.1.1 On openings neglecting (magic) comments 29
3.1.1.2 Magic comments 32

3.1.2 Source graphic files . 33
3.1.3 Created files in the TEX source directory 34

3.2 Exporting in various formats and checking sources 35
3.3 Checking versions of converters . 37
3.4 Logging of errors and warnings . 38
3.5 Injection of files . 38

3.5.1 The configuration files .latexmkrc and .chktexrc 42
3.5.2 A generic header file header.tex 44
3.5.3 A header file for graphics via package graphicx 47

3

4 CONTENTS

3.5.4 A header file to suppress meta-info for PDF files 47
3.5.5 An installation script for VS Code Extensions 48
3.5.6 Scripts in conjunction with reproducibility 48
3.5.7 Script (de)pythontexW patching (de)pythontex 49

3.6 Development of documents . 49
3.6.1 Editors, viewers and LATEX 51
3.6.2 The build tool latexmk . 53

3.6.2.1 Differences of latexmk with this LATEX builder . . 54
3.6.2.2 How latexmk is integrated 56

3.6.3 Checks in the context of document development 57
3.6.4 Goal Graphics grp . 57
3.6.5 Goal Clear clr . 58
3.6.6 Installation and Configuration 58
3.6.7 Miscellaneous . 59

3.7 Goals in the maven lifecycle . 61
3.8 The ant-tasks . 62

4 Graphics and Preprocessing 65
4.1 Graphic formats and packages supporting them 66
4.2 Target formats for preprocessing . 68
4.3 Conversion of fig-files . 70
4.4 Conversion of gnuplot-files . 73
4.5 Inclusion of MetaPost files . 75
4.6 Inclusion of SVG-files . 80
4.7 Pictures which are not transformed 83

5 Processing of LATEX Main Files 85
5.1 Transforming LATEX files into PDF files 87
5.2 Bibliographies . 89
5.3 Indices . 92
5.4 Glossaries . 96
5.5 Including code via pythontex . 98
5.6 Running and rerunning auxiliary programs 102

5.6.1 The interface between LATEX and auxiliary programs 102
5.6.2 When running an auxiliary program 103
5.6.3 Why rerunfilecheck is not used for auxiliary programs . . 104

5.7 Rerunning the LATEX processor . 106
5.8 Checking reproducibility . 107
5.9 Alternative build process with latexmk 110
5.10 Creating hypertext . 112
5.11 Creating odt files . 116

CONTENTS 5

5.12 Creating MS word files . 116
5.13 Creating plain text files . 116

6 Parameters resp. Settings 119
6.1 Generalities on parameters . 121
6.2 General parameters . 122

6.2.1 The parameter patternLatexMainFile 126
6.2.2 The parameter patternCreatedFromLatexMain 130

6.3 Parameters for goals vrs and inj 131
6.4 Parameters for graphical preprocessing 132

6.4.1 The parameter metapostOptions 134
6.4.2 The parameter svg2devOptions 135

6.5 Parameters for the LATEX-to-pdf Conversion 135
6.5.1 The parameter latex2pdfOptions 138
6.5.2 The parameter patternWarnLatex 140
6.5.3 The parameter patternReRunLatex 141

6.6 Parameters for creation of the bibliography 142
6.7 Parameters for creation of the indices 142
6.8 Parameters for creation of the Glossary 144
6.9 Parameters for including code via pythontex 145
6.10 Parameters for conversion LATEX to HTML 147

6.10.1 The parameter patternT4htOutputFiles 148
6.11 Parameters for further conversions 149
6.12 Parameters for the code checker chktex 150
6.13 Parameters for ensuring reproducibility 153
6.14 Parameters for latexmk and related 155

7 Exceptions and Logging 157
7.1 Exceptions . 160
7.2 Logging of warnings and errors . 164

8 Gaps 169
8.1 Gaps in graphics . 169
8.2 Build mechanism . 169
8.3 Indices . 169
8.4 Glossaries . 170

9 Bugs 173

10 Preferred usage, Test Concepts and Tests 177

11 Bibliography 183

6 CONTENTS

12 General Index 188

13 Tools related with LaTeX 189

14 LaTeX Packages 191

15 LaTeX Commands 193

Glossary 195

Acronyms 197

List of Figures

3.1 Document development with base tools 51

4.1 Conversion of a fig-file into pdf-, eps- and ptx-files with inclusions . 73
4.2 Conversion of a gnuplot-file into pdf-, eps- and ptx-files with inclusions 75
4.3 Converted sample gnuplot-file into ptx and pdf files 77
4.4 Conversion of a MetaPost-file into an mps-file 79
4.5 Converted sample MetaPost-file included as mps-file 79
4.6 Sample MetaPost-file included via luamplib for lua(hb)tex 80
4.7 Conversion of an SVG-file into pdf-, eps- and ptx-files with inclusions 82
4.8 Some svg-picture with text FIXME: uniformity 82
4.9 Some JPG-picture, directly included 83
4.10 Some PNG-picture, directly included 84

5.1 Conversion of a TEX file into a PDF, DVI, XDV file 90
5.2 Conversion of an AUX file into a BBL file using bibliographies . . . 92
5.3 Conversion of an IDX file into an IND file 93
5.4 Not supported: Conversion of IDX files into IND files 94
5.5 Conversion of an IDX file into IND files 95
5.6 Conversion of a glo file into a gls file using makeglossaries 99
5.7 Conversion of a pytxcode file using pythontex 102
5.8 Conversion of a depytx file using depythontex 102
5.9 Conversion of a TEX file into an xml file 113
5.10 Conversion of a TEX file into a docx file 116
5.11 Conversion of a TEX file into a txt file 117

7

8 LIST OF FIGURES

List of Tables

3.1 Overview over all injections . 41

4.1 Overview over the graphic formats supported via preprocessing . . 66
4.2 Language, suffixes and file format 72

6.1 General parameters . 126
6.2 Parameters for goals vrs and inj 132
6.3 Parameters for graphics preprocessing 134
6.4 The LATEX-to PDF conversion . 138
6.5 The BibTeX-utility . 142
6.6 The utilities MakeIndex and SplitIndex 143
6.7 The MakeGlossaries-utility . 145
6.8 Injecting output of code via pythontex 146
6.9 Replacing code by its output via depythontex 146
6.10 The LATEX-to-html-converter . 148
6.11 The parameters of further converters 150
6.12 The parameters of the code checker 150
6.13 The parameters of the pdf differ 154
6.14 The parameters for latexmk and related 155

7.1 The logging for MetaInfo . 159
7.2 The logging for TexFileUtils . 160
7.3 The BuildFailureExceptions of the class CommandExecutorImpl 161
7.4 The BuildFailureExceptions of the class Settings 163
7.5 The BuildFailureExceptions of the class MetaInfo 163
7.6 The BuildFailureExceptions of the class TexFileUtilsImpl . . 164
7.7 The BuildFailureExceptions of the class LatexProcessor 164
7.8 The errors and warnings on running a command 166
7.9 The errors and warnings on files/streams 167
7.10 Miscellaneous errors and warnings 168

9

10 LIST OF TABLES

List of Listings

2.1 The source repository for this plugin 20
2.2 The coordinates of this plugin . 21
2.3 The coordinates of this plugin and some settings 22
2.4 The executions of this plugin . 24
2.5 Forked execution with jxr plugin 25
3.1 Configuration with full range output formats 36
3.2 Output of goal latex:vrs . 39
3.3 A patch of the listings package 45
3.4 A patch of the luamplib package 46
3.5 Configuration without cleanup . 63
4.1 The ptx-file for a fig-file . 71
4.2 An example file in MetaPost . 76
6.1 The default pattern of the LATEX main file in a form as in a pom

configuration . 127

11

12 LIST OF LISTINGS

Chapter 1

Introduction

This document is created with lualatex or that like with output format pdf. The
package tex4ht is not loaded.

LATEX is a beautiful way to create printable documents, in our days preferably
as PDF (Portable Document Format)-files, with a particular strength in typesetting
formulae like

π =
√
12

∞∑
k=0

(−3)−k

2k + 1
. (1.1)

Here, portability of the format PDF is a vital feature. In the past, normally DVI
(DeVice Independent; traditional output format of LATEX engines, today widely
replaced by PDF) (device independent) described in [Rei17] has been used and
still creation of external formats like HTML (HyperText Markup Language), ODT
(Open Document Text) and DOCX (current document format for MS Word) are
based on an intermediate DVI-file. It is much more lightweight than PDF specified
in [PDF08], and the newer [ISO20].

This piece of software implements both an ant-task and a maven-plugin generat-
ing documentation of various formats from LATEX-files in a uniform way. Chapter 2
shows how to install both the maven-plugin and the ant-task and Chapter 3 de-
scribes the usage. Note that the maven-plugin is both easier to install and more
versatile to be used.

From the LATEX-files, only the so-called LATEX main files must be compiled
using a so called LATEX engine, other LATEX files occur only as input for the \input
command. It is very usual to endow LATEX-files with figures. On the other hand,
there are many graphic formats which cannot be included directly in a LATEX-file
and thus need special support by this software. If there is some format needed but
not yet provided, please write an email to the author.

Many graphic file formats require preprocessing, i.e. the according files must
be processed before processing LATEX main files, as described in Chapter 4. Then

13

14 CHAPTER 1. INTRODUCTION

follows the proper processing of LATEX main files including creation of index and
glossaries as described in Chapter 5. Besides PDF, the target formats include the
web-formats HTML and XHTML (eXtensible HyperText Markup Language), open
offices format ODT, Microsoft’s word formats like DOCX and finally plain text.

Uniformity of ant-task and a maven-plugin means in particular, that the settings
which may be passed to the task and those allowed for the plugin are in a one-
to-one relation. They are both described in Chapter 6. It is a design goal, that
the auxiliary programs used by this software are fully configurable via parameters,
that aspects not completely specified can be handled flexibly, there are parameters
supporting information development and that for the parameters are default values
which allow doing without explicit parametrization in most of the cases. Both, the
ant-task and the maven-plugin rely on the same code base which form the package
org.m2latex.core. The code specific for the ant-task is in org.m2latex.antTask
and that specific for the maven-plugin is in org.m2latex.mojo.

The creation process supports an index, a glossary and a bibliography. In
addition, code written in python and other languages can be included and executed
during creation of the document. Again, further functionality can be added by
demand.

The present manual is created by the maven-plugin or the ant-task described
here. There should be no difference in the result. This manual is designed in a way
that it covers the most important features but also to demand the most important
features. That way, creating this manual is a top level test for the underlying
software. The maven-plugin is somehow superior because it better supports the
design process for the LATEX sources.

If something goes wrong in the build process, or there is an indication of some
deficiency in the result of the build process, processing must be aborted if going on
does not make sense and there must be some error or warning logging as described
in Chapter 7.

The author found some gaps, i.e. desirable features which are not yet imple-
mented. To prioritize further work, all these gaps are collected in Chapter 8.
Accordingly, the most important bugs are collected in Chapter 9. The user is
encouraged to contribute with feature requests and bug reports and to vote for
realization of features and on fixing bugs. Software quality is ensured mainly
through tests which are described in Chapter 10.

Chapter 2

Installation

Both the ant-task and the maven-plugin just direct parameters from ant and from
maven, respectively, to the programs that do the proper work. Thus, installation
of the ant-task and of the maven-plugin requires that all needed programs are
installed. These prerequisites are collected in Section 2.1.

2.1 Prerequisites
The ant-task requires ant and is tested with version

Apache Ant(TM) version 1.10.12 compiled on December 14 1969

(of course the year is not correct, but this is the version string displayed by that
release) and the maven-plugin with mvn

Apache Maven 3.9.2

Both, ant and maven are written in java and require a java installation. The java
version used for tests is 17.0.8.

So, a java installation is the base for running either the ant-task or the maven-
plugin. Also, this plugin is written in java. To use the maven-plugin, of course
maven must be installed and to use the ant-task, ant must be installed.

The ant-task just passes parameters in the build file to the core and accordingly
the maven-plugin passes parameters in the pom to the core of this software. The
core just invokes various programs to do the actual work.

Besides plain building of documentation, this software also supports development
of documents. LATEX and related programs are based on text files mainly and so a
good editor is required for development.

The author recommends and uses VS Code, e.g. 1.81.1 in conjunction with
package LATEX workshop 9.13.4 and LTeX 13.1.0.

An alternative is good old

15

16 CHAPTER 2. INSTALLATION

GNU Emacs 24.3.1 (x86_64-suse-linux-gnu, GTK+ Version 3.16.7)

together with several packages to support various file formats. To list the available
packages type M-x list-packages. For comfortable development with LATEX, the
AUCTEX package, version 11.88 is recommended. The version is displayed from
within Emacs by typing C-h v AUCTeX-version RET. For an overview on AUCTEX
see [TAK+14].

FIXME: gnuplot-mode expects file extension gp. Should be made configurable.
To edit metapost, the mode built-in mode Metamode is used.
Built-in mode Docview to view PDF, PS and DVI.
latexmk
Builtin modes bib-mode and bibtex
Built in reftex-modes
Useful: ac-math, auto-complete-auctex
Depending on what kinds of graphic formats are used, the following programs

are required:

• To convert the FIG (native file format for xfig)-files into PDF-files, by default
fig2dev is used. It makes sense to have xfig installed to create and edit
fig-files, but this is not mandatory.

• To convert gnuplot files into PDF-files, there is no alternative, to have installed
gnuplot. It serves as an interpreter and also as a converter. Strictly speaking,
only the latter functionality is required here.

• To convert MP (MetaPost: input format for the graphic program mpost)-files
into EPS (Encapsulated PostScript)-files, the interpreter mpost or equivalent
is required. This comes with a standard TEX installation. With the standard
configuration, the resulting EPS-file can be viewed with ghostscript and
for developing it is recommended to have ghostscript installed.

• To include SVG (Scalable Vector Graphics)-files into LATEX, inkscape must
be installed. It also serves to create and to edit SVG-files.

Currently, for including PDF-files in both cases, the driver dvipdfmx must be
installed. Strictly speaking, this is required only for HTML-creation and related.
Note that if no pictures created by fig2dev, gnuplot, mpost or by inkscape are
used, of course, neither fig2dev nor gnuplot, mpost, inkscape nor dvipdfmx is
needed. To include graphics, the graphics bundle described in [Car16] is required,
except for SVG-files which requires the svg-package described in [Ilt12].

As the set of required software depends on the graphic formats which shall be
imported, it depends also on the set of output-formats to be supported:

2.1. PREREQUISITES 17

• To create PDF-files from LATEX-files we use LATEX engines like lualatex,
xelatex or pdflatex.
LATEX uses several auxiliary programs. Above all bibtex, to create the bibliog-
raphy and makeindex and splitindex for the index and makeglossaries for
the glossary. The latter two also require the latex packages makeidx, option-
ally showidx, both described in [BLC+14], the package splitidx documented
in [Koh16] and glossaries specified in [Tal24b]. Note that makeglossaries
either invokes makeindex or xindy, depending on the parametrization of the
package glossaries. Both, makeglossaries and xindy are written in Perl,
which shall also be installed if a glossary is required.
To include program code in Python, octave and other language, pythontex
is needed; to eliminate that code creating an equivalent TEX file, one has
to combine it with depythontex. Both are written in Python3 which shall
be installed also as a dependency. To use them, one also needs to install the
package pythontex.
It is standard to endow a PDF-file with hyperlinks. To support this, the
package hyperref is required.

• To create HTML-files, or to be more precise any kind of SGML (Standard
Generalized Markup Language) and XML (eXtensible Markup Language),
from LATEX-files, htlatex or alternatively htxelatex is used. Currently,
the author is not aware of any alternative to the two. This includes also
creating OpenOffice documents like ODT-files. Thus, OpenOffice documents
are created in two steps, the first is to create PDF-files with the according
tools, the second one is done by htlatex or that like.

• To create RTF-files, currently latex2rtf is used. Note that this does not
require pdflatex. As a drawback, not all LATEX-packages are supported.

• MS Word documents are created from OpenOffice documents via the com-
mand odt2doc and thus require three steps and so the according tool chain.

• Finally, there is a way, to create plain text files from the PDF-files via
pdftotext. The way from LATEX to text via PDF makes sense because
that text is well formatted math mode symbols like π and because table of
contents, index, glossary and that like are included. So, for that task, besides
pdftotext the whole tool chain to create PDF-files is required.

• An application which does not create a target, i.e. a file in the target directory
is chktex which just checks the LATEX main files and associated files.

18 CHAPTER 2. INSTALLATION

So to run this software, the aforementioned programs or at least the subset
used, must be installed. To obtain reproducible results, the versions must fit.
This version is checked with the executables with versions given by an according
properties file version.properties.

There are also several LATEX-packages needed or at least recommended. The
recommended ones are

geometry described in [Ume10] to control page layout.

microtype described in [Sch16] improve readability and make the document look
nicer. It also helps to avoid bad boxes.

hyperref described in [RO22] to insert hypertext marks, which I do not want to
miss in larger documents.

srcltx described in [SU06] which allows jumping from the DVI file to the TEX
source and back.

showframe if geometry is not used with option showframe. There seems to be no
package documentation for package showframe.

showlabels described in [Gra22] which displays the defined labels in the text.
This is used for drafts only.

booktabs described in [Fea16]

anyfontsize described in [Sza07] to allow arbitrary font sizes, eliminating certain
warnings. An alternative may be fix-cm described in [SMCR15].

Almost required are

• rerunfilecheck described in [Obe22] which writes additional rerun warn-
ings to the log file if some auxiliary files have changed. This software
partially relies on these warnings to control rerun the LATEX engine. Although
rerunfilecheck is intended to detect also rerunning auxiliary programs,
this does not work properly and so this software bases reruns on internal
algorithms.

• iftex described in [Tea22] which has two functions:

– It provides the \ifpdf-command to detect pdf-mode. This is required
to distinguish creation of PDF and text from HTML, ODT, DOC and
others, based on DVI/XDV (eXtended Device Independent; an extension
of the traditional output format DVI of LATEX engines, today widely
replaced by PDF).

https://www.simuline.eu/LatexMavenPlugin/fromMain/version.properties

2.1. PREREQUISITES 19

– Also, it is able to detect a specific LATEX engine via commands like
\ifluatex or \ifpdftex but also \iftutex being true for lualatex
and xelatex, but not for pdflatex. This is used if a document shall
work for more than one engine like this manual and is in particular
used to create reproducible PDF files which is engine specific. Finally,
there is a way to force an exception if the wrong engine is used, e.g. by
specifying \RequireLuaTeX.

• The graphics packages described in [Car16], in particular graphicx, xcolor
and transparent, the latter two described in [Ker16] and in [Obe16b], re-
spectively. Sometimes also bmpsize described in [Obe16a] if pixel graphics is
used.

• import described in [Ars09] e.g. to import nested graphic files from arbitrary
directories.

• inputenc described in [JM15] to select an input encoding fontenc to select a
font encoding. Font selection is described in [Tea00] in general, with Section
5 on font encoding and Section 5.1 on the fontenc package. This package
is almost indispensable if you do not write English, e.g. to access German
umlauts. Note that [MFL16] describes font encoding in more detail.

• makeidx and showidx described in [BLC+14] or something comparable for
creating indices.

• glossaries described in [Tal24b] with tutorial [Tal24a] or something com-
parable for creating glossaries.

• tocbibind described in [WP10] to include bibliography and index (what
about glossaries?) into the table of contents.

• nag described in [Sch11] which performs certain checks unveiling deficiencies
not filtered by the compiler nor by another check tool.

• babel described in [BB24] for language support. This is not used by this
manual, because it is in English.

Useful packages with which this software is tested:
• The ams-packages **** amsmath

• longtable described in [Car98] for long tables, i.e. tables exceeding a page.

• listings described in [HMH15] for listings.

• fancyvrb described in [Zan10] provides useful environments to mark verbatim
text.

20 CHAPTER 2. INSTALLATION

<p r o j e c t . . .>
. . .

<r e p o s i t o r i e s>
<r e p o s i t o r y>

<id>publicRepoAtSimuline</ id>
<name>repo at s imu l ine</name>
<u r l>https://www.simuline.eu/RepositoryMaven</ u r l>

</ r e p o s i t o r y>
</ r e p o s i t o r i e s>
. . .

</ p r o j e c t>

Listing 2.1: The source repository for this plugin

2.2 Setting up pom.xml for the maven plugin
If this software is used as a maven plugin, it need not explicitly be installed, maven
itself does this by need based on the entries of the pom.

We can distinguish between entries in the pom which are necessary for any kind
of usage of this maven plugin described in Section 2.2.1, configuration settings to
obtain behavior deviating from the default as sketched in Section 2.2.2 and finally
executions to integrate this plugin in the lifecycle as described in Section 2.2.3.

2.2.1 Basic setup
Unfortunately, this plugin did not yet make it into maven central. Thus, one has to
add the providers’ repository to the pom as shown in Listing 2.1 to enable maven
to find the software.

Then just adding the coordinates in the build-plugins section of the pom as
shown in Listing 2.2, and it can be used from command line, e.g. to create PDF
files as mvn latex:pdf or for cleanup mvn latex:clr with default configuration.
Alternatively, the plugin can be inserted also in the reporting-plugins section of
the pom.

This plugin is indexed in https://mvnrepository.com/artifact/eu.simuli
ne.m2latex/latex-maven-plugin.

2.2.2 Deviating from default settings
This plugin is highly configurable by means of a lot of settings. Listing 2.3 shows
some of them, but all are in their default settings, so no need to specify them
explicitly:

https://mvnrepository.com/artifact/eu.simuline.m2latex/latex-maven-plugin
https://mvnrepository.com/artifact/eu.simuline.m2latex/latex-maven-plugin

2.2. SETTING UP POM.XML FOR THE MAVEN PLUGIN 21

<p r o j e c t . . .>
. . .

<bu i ld>
. . .

<p lug in s>
. . .

<!−− crea t e html and pdf and o ther formats from l a t e x −−>
<plug in>

<groupId>eu.simuline.m2latex</ groupId>
<a r t i f a c t I d>latex-maven-plugin</ a r t i f a c t I d>
<version>2.1</version>

</ plug in>
. . .

</ p lug in s>
. . .

</ bu i ld>
. . .

</ p r o j e c t>

Listing 2.2: The coordinates of this plugin

targets defines the output formats and the checks to be run (chk signifies running
chktex) for goal cfg.

cleanUp whether all generated files shall be removed leaving the LATEX source
folder untouched.

latex2pdfCommand is one of the names of the tools to be invoked. There are more
settings for treating tools.

It is the experience of the author, that in many situations no explicit setting
is necessary at all. The only setting needed to be configured regularly is targets
which determines the output formats and whether sources are checked for goal cfg.
It is recommended to use checking via target chk in any case. Some settings are
only relevant only for document development as described in Section 3.6, one of
these is cleanUp: setting this to false keeps intermediate files, in particular log
files available which helps to find errors and in locating the sources of warnings.
There are further situations where the user is grateful of being able to configure this
software, or even where it is not usable with default settings. Chapter 6 describes
the complete set of settings. The same pieces of information is given in the pom.xml
used to test this plugin. Although each setting takes its default value, it is given
explicitly and is endowed with a comment describing it in detail as in Chapter 6.
Since this pom is quite long, it is not part of this manual but is given by reference
on the project site.

https://www.simuline.eu/LatexMavenPlugin/fromMain/pom4pdf.xml

22 CHAPTER 2. INSTALLATION

<!−− crea t e html and pdf and o ther formats from l a t e x −−>
<plug in>

<groupId>eu.simuline.m2latex</ groupId>
<a r t i f a c t I d>latex-maven-plugin</ a r t i f a c t I d>
<version>2.1</version>
<c o n f i g u r a t i o n>

<s e t t i n g s>
<!−−t a r g e t s >chk , pdf , html</ t a r g e t s−−>
<!−−latex2pdfCommand>l u a l a t e x</latex2pdfCommand−−>
<!−−cleanUp>true</cleanUp−−>
. . .

</ s e t t i n g s>
</ c o n f i g u r a t i o n>

</ plug in>

Listing 2.3: The coordinates of this plugin and some settings

2.2.3 Executions
To make the plugin available within a build, one has to add executions, e.g. as
shown in Listing 2.4. For all goals specified there, a default phase is defined, as
given as a comment but as this is hard-coded, one has to specify in the executions
only when deviating from the default.

Typically, this plugin, to be more precise its goal cfg, which allows configuring
checks and the output formats in setting targets, is used in the site lifecycle
phase to process latex sources. It is perfectly ok to stick to a single format like pdf
and configure target accordingly.

Alternatively, one may define an execution with the required goals like pdf, but
then the phase must be specified explicitly, because there is no default phase. Of
course, then no additional check is performed.

The goal inj injects files into the working directory texSrcDirectory as
described in detail in Section 3.5. For some files it makes sense to do this independent
of the build process e.g. by invoking mvn latex:inj, but in general it is preferable
to perform the injection each build process anew because that way the injected file
can be adapted to the current settings of this plugin. Note that the execution of the
goal inj has its own configuration, which allows a single parameter, injections.
Listing 2.4 gives a recommended parameter value, although not the default.

Normally, all created files in the source directory are removed after the output
has been copied to the target, but during document development, described in
Section 3.6, cleanup may be deactivated by setting cleanUp and so the source
directory may be polluted. This may happen if other tools are used in conjunction
with this plugin.

Nevertheless, cleanup is recommended to make the individual runs of this plugin

2.3. SETTING BUILD.XML FOR THE ANT TASK 23

independent. Thus, for document development, there is a dedicated goal clr to
clean up the source directory in phase clean. Note that also the configuration files
created by goal inj are cleared. Since cleanup occurs in the course of the build
and not with goal clr the parameter cleanUp is given in the general settings. The
goal clr cannot be configured.

Finally, it is recommended to add a check of the versions of the programs called
converters used right in the phase validate via goal vrs. Listing 2.4 specifies
versionsWarnOnly=true, which restricts goal vrs to just display a warning if
something is wrong which seems appropriate in the context of validation.

For the default configuration versionsWarnOnly=false, the goal vrs yields a
full list of registered converters, signifying which one may cause trouble because its
version is out of range as displayed in Listing 3.2. In the course of a build run, this
seems too much information, but in fact, it is just a matter of taste.

For details on executions of goals inj, clr and vrs see Section 3.6.
The executions considered so far are appropriate for mavens default lifecycle.

Typically, this maven plugin is used in the site lifecycle, which does not contain
the phase validate, but accordingly pre-site. As a consequence, goals inj and
vrs are not invoked. To get around, one could specify the phase pre-site in
the execution explicitly. The author uses the maven-jxr-plugin as illustrated in
Listing 2.5, which, as a side effect, forks the lifecycle and includes phase validate
of the default lifecycle and in particular goals inj and vrs.

It is planned to perform a version check in first usage of a tool, except tools in
the environment, i.e. build tools and programming languages. This avoids check
of tools which are not needed. Also, for the generic user, no execution for goal
vrs is needed any more; by need it can be invoked from the command line as
mvn latex:vrs. Still the developer of this software will continue to specify that
execution.

Note that in Listing 2.4 the section configuration which is not part of an
execution contains an empty configuration and is thus as much as empty. It can
thus be skipped in a default configuration creating output in formats PDF and
HTML and performing checks on the LATEX-sources. However, pom.xml gives an
example pom using this latex plugin with full configuration with default values and
executions. In addition, Chapter 6 describes each setting individually.

2.3 Setting build.xml for the ant task
As you can see, the taskdef’s refer to java classes. Unlike maven which loads jars
with the classes inside automatically from

https://www.simuline.eu/RepositoryMaven%

https://www.simuline.eu/LatexMavenPlugin/fromMain/pom4pdf.xml

24 CHAPTER 2. INSTALLATION

<plug in>
<groupId>eu.simuline.m2latex</ groupId>
<a r t i f a c t I d>latex-maven-plugin</ a r t i f a c t I d>
<version>2.1</version>
<c o n f i g u r a t i o n>

<s e t t i n g s>
<!−−t a r g e t s >chk , pdf , html</ t a r g e t s−−>
<!−−cleanUp>f a l s e</cleanUp−−>
. . .

</ s e t t i n g s>
</ c o n f i g u r a t i o n>
<execut i ons>

<execut ion>
<id>process −la t e x −sources</ id>
<!−− chk , dvi , pdf , html , odt , docx , r t f , t x t −−>
<goa l s><goa l>c f g</ goa l></ goa l s>
<!−− phase>s i t e</ phase−−>

</ execut ion>
<execut ion>

<id>c l ear −la t e x −sources</ id>
<goa l s><goa l>c l r</ goa l></ goa l s>
<!−− phase>c lean</ phase−−>

</ execut ion>
<execut ion>

<?m2e execute onConf igurat ion ?>
<id>i n j e c t −f i l e s</ id>
<goa l s><goa l> i n j</ goa l></ goa l s>
<!−− phase>v a l i d a t e</ phase−−>
<c o n f i g u r a t i o n>
<i n j e c t i o n s>la texmkrc , chk texrc , header</ i n j e c t i o n s>

</ c o n f i g u r a t i o n>
</ execut ion>
<execut ion>

<id>v a l i d a t e −conve r t e r s</ id>
<goa l s><goa l>vrs</ goa l></ goa l s>
<!−− phase>v a l i d a t e</ phase−−>
<c o n f i g u r a t i o n>

<versionsWarnOnly>t rue</versionsWarnOnly>
</ c o n f i g u r a t i o n>

</ execut ion>
</ execut i ons>

</ plug in>

Listing 2.4: The executions of this plugin

2.4. INSTALLATION FROM SOURCE 25

<p r o j e c t>
. . .

<r epo r t i ng>
<plug in s>

. . .
<!−− as a s i d e e f f e c t ,

t r i g g e r s ' generate−sourc e s ' f o r ked phase execu t i on −−>
<plug in>

<groupId>org . apache . maven . p lug in s</ groupId>
<a r t i f a c t I d>maven−jxr−plug in</ a r t i f a c t I d>
<version>3 . 3 . 0</version>

</ plug in>
. . .

</ p lug in s>
</ repo r t i ng>

</ p r o j e c t>

Listing 2.5: Forked execution with jxr plugin

the jar for the tasks, latex-maven-plugin-2.1-antTask.jar, must be down-
loaded manually from
https://www.simuline.eu/RepositoryMaven/eu/simuline/m2latex/latex-maven-plugin/2.1%

Moreover, ant expects to find the jar files in an according folder. In my installation
it is /usr/share/ant/lib/; as can be seen in the ant documentation, in general it
is in folder lib in ant’s installation directory.

However, build.xml gives an example build file using this latex ant task with
full configuration with default values and executions. From that, one has to copy
the following into the build.xml file in the current project:

• The properties antJarDir and createdJar,

• The path element with the id latex.classpath

• The taskdefs latexCfg and latex:Clr

• The targets latex:cfg and latex:clr

As for the maven plugin, for the ant task, add configuration, where a deviation
from the default requires to do so. The configuration is the same and is described
in detail in Chapter 6.

2.4 Installation from source
The first step to install from source, is to clone from the repository by

https://www.simuline.eu/LatexMavenPlugin/build.xml

26 CHAPTER 2. INSTALLATION

git clone https://github.com/Reissner/maven-latex-plugin

of course assuming that git has been installed. Then change into the root repository
where pom.xml for maven and also built.xml for ant are located.

To install the maven-plugin, ensure that maven is installed. One is tempted
just to type

mvn clean install

but this does not work since the plugin needs itself to be installed to perform even
clean. To solve that problem just comment out all its executions in the local
pom.xml by enclosing them in <!--…-->. In fact this is a minor bug, since, to
be strict, only the executions for verification and clearing must be deactivated.
For processing, it would be sufficient to add <phase>site</phase> to execution
process-latex-sources.

Since the author develops with maven, including the development of the ant
task, the maven built, creates the file latex-maven-plugin-2.1-antTask.jar
defining the ant task. To this end, also mvn clean package is sufficient. After
that, installation proceeds like described in Section 2.3 copying that jar file ant’s
lib-folder where ant can find it.

With root access and after having checked the proper paths, the build file
build.xml can be used to perform copy task by ant install, to insert an according
link by ant link to remove it again with ant uninstall. The build file build.xml
works only if latex-maven-plugin-2.1-antTask.jar is placed where ant can find
it or if the parts are deactivated below the line

<!-- deactivate the following,
unless the ant task is installed already -->

I feel building with maven and linking the jar created is a very good way to
develop the ant task, because after changes the new ant task is available immediately.

For typical changes in the sources, it is possible to recompile and package the
ant task by ant jar also cleanup is possible with ant clean. Finally, the ant task
can be tested with ant latex:cfg and ant latex:clr.

In the long run, it should be possible to build the ant task from sources with
ant alone.

Chapter 3

Usage of Plugin and Task

This software offers both, a maven plugin and an according ant task, but the
emphasis is on the maven plugin. Thus, the sections of this chapter are either
general or apply to the maven plugin; only Section 3.8 specifically refers to the ant
task. Usage presupposes installation as described in Chapter 2 including settings
in pom.xml as described in Section 2.2 for the maven plugin and the settings in
build.xml as described in Section 2.3 for the ant task.

This plugin may be used both if the LATEX-sources are ready to create “final”
output from them and also to support development of the LATEX sources. Accord-
ingly, this chapter has Section 3.1 devoted to the form of the sources, including
directory structure, LATEX-files and others, mainly graphic files included and a
Section 3.2 on exporting into various formats.

There is a very special usage, called development of documents, which means
while the document is under construction. The features and goals tied to this phase
are collected in Section 3.6.

In contrast, Section 3.7 is on usage of the maven plugin within the lifecycles.
This can be used during development of documents but is more appropriate for
small changes or when development finished at a stage.

3.1 The source files and their directories
Source files are files contributing to creating documentation from LATEX-files in
the build process which are not themselves created in the build process. They are
searched in the TEX source directory and subdirectories recursively. By default,
this is ./src/site/tex, where “.” is the base directory of this maven/ant-project.
This structure complies with conventions in maven-projects.

Note that, against the convention of maven-projects, the TEX source directory
may contain also files created during the build process. By default, after the build

27

28 CHAPTER 3. USAGE OF PLUGIN AND TASK

process is finished, they are removed again. For some background on this see
Section 3.1.3.

Source files may be TEX files treated in Section 3.1.1 and various kinds of
graphic files described in Section 3.1.2, but may include also

• verbatim text embedded into TEX files with verbatim,

• BIB files typically describing a bibliography, or, not yet supported, a glossary
or that like,

• program files, either included as a listing by package listings or executed
via the package pythontex.

3.1.1 LATEX main files and other latex files
The TEX files are special in that only part of them is processed explicitly invoking
a compiler like lualatex on them, part is just included via \input or \include.
The LATEX-files to be compiled top level, are called LATEX main files. As an example,
in the TEX source directory of this software, manualLMP.tex is a LATEX main file,
whereas the file header.tex is not, although also a LATEX-file: it is intended to be
input in another TEX file, in this case manualLMP.tex.

LATEX main files are detected automatically by fitting the regular expression
patternLatexMainFile described in detail in Table 6.1 on page 126, and in the
reference given there, whereas the description here is quite high level.

As a first approximation, a LATEX main file is one invoking the command
\documentclass or the outdated \documentstyle, both specifying the document
class. It must be excluded that the pattern matches a textual occurrence of
\documentclass, which just occurs because the document is on LATEX and mentions
the command \documentclass. This is quite easy, since there is little allowed in
TEX files preceding these commands.

Consequently, the pattern matches the region from the start of the file to
and including the \documentclass or \documentstyle command. This starting
segment of a LATEX main file is called the opening.

Here a word of warning is at place: if a TEX file does not fit the pattern, it is
not interpreted as a LATEX main file without further warning. So check whether
the file under consideration is processed if

• it is built for the first time or

• its opening is changed or

• the parameter patternLatexMainFile is changed

3.1. THE SOURCE FILES AND THEIR DIRECTORIES 29

If you distrust the recognition mechanism via pattern matching altogether, you
can explicitly specify each LATEX main file in the parameter mainFilesIncluded
described in Table 6.1 on page 126. This is safe because if a file specified in
mainFilesIncluded that like is not a LATEX main file according to the pattern
patternLatexMainFile, a warning is emitted. That way one can check whether
the pattern is matched. We could have decided that these files are compiled with
or without warning, but this would lead to a technique is that it is inconvenient
and not well maintainable.

3.1.1.1 On openings neglecting (magic) comments

This section contains material both specific for supported document classes and
general information, but magic comments are deferred to Section 3.1.1.2.

This software is tested for document classes

• article and book which are built-in,

• beamer for presentations as described in [TWM23],

• leaflet creating leaflets as explained in [SGNS20] and in [GNS20],

• scrlttr2 for letters described in [Koh23], Part1, Chapter 4,

• and minimal for quite special uses (did not find real documentation).

Note that scrlttr2 replaces the built-in letter which is not recommended.
In fact, is the only KOMA class this software is tested for. The attentive reader
may realize that the built-in document class report is not mentioned. It shall
work but is currently not tested.

Nevertheless, the pattern patternLatexMainFile matches all possible docu-
ment classes. Typically, the document class is loaded with options. The most
frequent class may be article followed by report and book. For these, we suggest
something like

\documentclass[a4paper,12pt,english]{article}

where a4paper is a setting, typical for Europe or, not the US. The default font
size is 10pt and sometimes it makes sense to increase this. For documents which
are solely in English no language setting is required, except if loading the package
babel, else the hyphenation patterns get lost. Since we recommend inputting the
header file header.tex described in Section 3.5.2 which in turn loads babel and by
the way also csquotes, a language setting is mandatory. It is possible specifying the
language when loading babel as an option like so \usepackage[english]{babel},
but it is recommended to specify the language as an option of the document class,

30 CHAPTER 3. USAGE OF PLUGIN AND TASK

in order to make it available for various packages, besides babel also for csquotes.
If a document has more than one language, specify all of them, the last the one
the document starts with, but [BB24] Sections 1.7 and 1.8 show how to change
language, here temporarily into German, which requires specifying german in front
of english in the document class. Note the quotes and the correct hyphenation in
the following paragraph.

Sie las den Artikel „Chancen für eine diplomatische Lösung“ in der
„Wochenpost“, während er es sich nicht nehmen ließ, sich Thomas
Manns Novelle „Der Tod in Venedig“ zu Gemüte zu führen.

To obtain correct quotes in the above paragraph, package csquotes must be
loaded with option autostyle. Since csquotes is loaded in header.tex given by
an injection as described in Section 3.5, this option must be passed to csquotes
before loading the document class, e.g. via

\PassOptionsToPackage{autostyle}{csquotes}

This is the technique to pass options to packages in general.
For documents of class minimal there are no requirements imposed. No checks

and no PDF-info. For all other document classes, it is recommended to load nag
before \documentclass by

\RequirePackage[l2tabu, orthodox]{nag}

Thus the pattern patternLatexMainFile allows \RequirePackage with its options
preceding \documentclass.

There are cases, where one and the same document comes in two flavors both
of which must be built. As an example, consider a document with a confidential
variant and with a non-confidential variant. To define these, the declaration of the
document class must be preceded by the following kind of code:

\RequirePackage{etoolbox}
\newbool{isConfidential}
\setbool{isConfidential}{true}

The new thing is defining and setting a boolean via \newbool and \setbool,
respectively. It is a good idea to set a watermark via

\ifbool{isConfidential}{%
\usepackage{draftwatermark}
\SetWatermarkText{Confidential}%

}{%
% no watermark text
}

3.1. THE SOURCE FILES AND THEIR DIRECTORIES 31

The same technique differentiating between confidential and public may be used
to define a lecture with and without solution or any other kind of variant.

Documents of class leaflet resemble articles, except special options like
notumble.
\documentclass[a4paper,notumble,10pt,english]{leaflet}% 12pt,notumble

The same is true for letters of type scrlttr2, except for the special specification
of font size and versioning of the class:
\documentclass[english,german,a4paper,fontsize=10pt,version=last]{scrlttr2}
...
\input{header.tex}
\LoadLetterOption{DIN}

Observe that after inputting header.tex which loads geometry, various pseudo
lengths have to be re-adjusted. This is done by loading the letter option. Without
it may happen, that the text does not reach until the bottom of the frame.

What is special for beamer presentations is, that in general two documents with
the same identifier, e.g. title are created, the proper presentation, e.g.
\RequirePackage[l2tabu, orthodox]{nag}
\PassOptionsToPackage{colorlinks,linkcolor=blue,urlcolor=blue,citecolor=blue,destlabel}{hyperref}

\documentclass[10pt,english]{beamer}
\mode<presentation>%

\input{useBeamer}

and the corresponding handout
\RequirePackage[l2tabu, orthodox]{nag}

\documentclass[a4paper]{article}
\usepackage{beamerarticle}
\input{useBeamer}

both including the same piece of code which is included from file useBeamer.tex.
The author recommends to stick to this convention. As an example document
may serve [Rei23a] which is a presentation of this software including the handout
and illustrates the use of the beamer class. Observe, that both documents use
header.tex injected as described in Section 3.5.2 loading various packages. The
beamer class is special in that it loads the hyperref package itself. To avoid
option clash with header.tex, for document class beamer option destlabel must
be passed to the package. Maybe it is a matter of taste, but beamer tends to make
links invisible. To force loading options specifying colors for links and destlabel,
use \PassOptionsToPackage as shown above.

All documents but beamer documents must specify the paper size globally via
\documentclass. Beamer documents may specify accordingly aspectratio. All
this must be allowed for LATEX main files.

32 CHAPTER 3. USAGE OF PLUGIN AND TASK

3.1.1.2 Magic comments

It also makes sense to allow comments also in openings, i.e. text from unescaped
% to the end of the line, and also magic comments. A magic comment, as all
comments, is ignored by the LATEX compilers but give hints to more high level
tools like IDEs or build tools like this LATEX builder. It is the mechanism to treat
a document in a specific way, so magic comments override the general settings.

Typically, a magic comment comprises a whole line and starts with % !, maybe
followed by an identifier of the tool it refers to or by an identifier referring to
TEX files in general. For example latex workshop and TEXshop support the magic
comment % !TEX root and this must be essentially in the first line. The magic
comments specific for this tool may be preceded by general magic comments and
start with % !LMP which is short for “latex maven plugin”. This is not fully correct
but easy to remember.

This LATEX builder is designed to cooperate with other tools. The magic
comments of the other tools as described in various places in Section 3.6 on
document development and in particular in Section 3.6.2. Thus, if appropriate,
also magic comments of other tools are read, except those of AUCTEX, because
AUCTEX places magic comments at the end of file, forcing this software to read all
the file if it accessed AUCTEX magic comments also. All other tools including latex
workshop for VS Code support a subset of what is defined by TEXstudio. From
all magic comments in the context of signifying LATEX main files only program
and root are relevant. If a root is given, then the file is no LATEX main file and,
provided the feature is used, also the converse is true. Since this software shall
not rely on further tooling, it does not use root. All in all, among the general
magic comments only % !TEX program=… is read. It can occur more than once,
but the first occurrence is what counts; the others are ignored silently. Note that
the magic comment % !TEX program=… overrides the setting latex2pdfCommand
for creating PDF files and related, specified in Table 6.4 on page 138, but not the
tex4htCommand from Table 6.10 on page 148.

After the general magic comments of the form % !TEX … come the ones specific
for this LATEX builder. They take the form % !LMP …. Like the general magic
comments, the specific ones are all optional, but in contrast, they come in a fixed
order without repetition.

What follows is a full range of magic comments:

% !TEX program=lualatex
% !LMP chkDiff
% !LMP latexmk
% !LMP targets=chk,pdf,html

\documentclass[a4paper]{article}

http://transit.iut2.upmf-grenoble.fr/doc/texstudio/html/usermanual_en.html#TEXCOM

3.1. THE SOURCE FILES AND THEIR DIRECTORIES 33

Section 6.2.1 describes the meaning of the individual comments in the course
of explaining the pattern patternLatexMainFile. Note that there the names of
the magic comments is given, whereas the above listing refers to the content, but
it is easy to identify the according magic comments. The relation of the magic
comments is described in the following.

The magic comments may come only in the ordering given in the above list-
ing, but each of them is optional. They can be freely combined, but note that
chkDiff and latexmkMagic apply to creation and check PDF files only. So, for
targets=pdf,html, these magic comments apply to target pdf, but not to html.
For targets=chk,html it even takes no effect at all without issuing a warning. As
explained above, program affects only the targets pdf and dvi including also XDV
files.

Note that documents of the classes beamer, leaflet and scrlttr2 can essen-
tially only be compiled into a PDF, and maybe further to a TXT file. In addition,
to targets and goals pdf and txt, it can be checked with target or goal chk. Other
targets are skipped, and a message is displayed. The relations are configurable
through settings targets and docClassesToTargets both in Table 6.1 on page 126.
Also, if a document class occurs, which is not registered in docClassesToTargets,
a warning WLP09 described in Table 7.10 on page 168 is displayed.

3.1.2 Source graphic files
The great bulk of file types occurring as sources, are graphic files in various formats.
Note that this section is not about intermediate file types like PDF or MPS used
to include the original file types into the target.

As regards the way the according files are included in LATEX-files, there are the
following kinds of graphic formats, all included in the TEX source directory.

1. The first can be included into LATEX-files directly via \input. These formats
are essentially LATEX and are defined in an according package. Examples are
eepic described in [Kwo88] and above all tikz described in [Tan23].

2. The second one via the command \includegraphics defined by the package
graphicx which is described in [Car16]. Chapter 2 therein mentions the
supported drivers, among these are also dvipdfm and dvipdfmx, the latter
is the default. It is not the package but the driver which decides on the
support of graphic formats. The dvipdfmx user manual, [Tea20], Section
3.1.1 lists the allowed formats MetaPost (i.e. MPS (metapost’s postscript like
output including text)), postscript (i.e. EPS), PDF, JPG (Graphics format
developed by the Joint Photographic Experts Group) including jpeg2000 and
PNG (Portable Network Graphics).

34 CHAPTER 3. USAGE OF PLUGIN AND TASK

3. The third one must be transformed into a graphics format of one of the
former two kinds using an external tool for transformation. Here, of course,
only a limited support is possible, because there is a broad variety of formats.
We have chosen

• the FIG-format described in [Rei16] because of its simplicity,
• the gnuplot format, described in [WK23], because it allows computation

of function plots,
• scalable vector graphics SVG-format specified in [Da11]1 as it is impor-

tant for construction and the counterpart of pixel oriented formats,
• likewise, metapost (MP-format), described in [Hob24] because it is

native to LATEX and quite versatile

4. The fourth kind of graphics formats has to be transformed into one of the
kinds one or two but unlike in type three, this is not done explicitly by
an external tool but by a latex-package during the LATEX-run. Note that,
although not required to be explicitly transformed, those graphics files induce
additional files by running LATEX. Essentially, each of the abovementioned
type of format can be included that way but currently, this is done for the
SVG-format only included by the package svg (see [Ilt12]). The author
personally refrains from using packages like that because of the lack of
flexibility and further drawbacks.

5. Finally, there is a way to include graphics which is not really a graphic
format: In the course of running code, e.g. by package pythontex in Python,
as described in Section 5.5, it is also possible to create computed graphics.
It may be advisable to separate code into special files to be included via
\input, but it is not strictly required. In the long run it seems a good idea,
to extend pythontex to read in code files, e.g. in python directly.

3.1.3 Created files in the TEX source directory
Note that against maven convention and unlike former versions of this software,
the current version does not create a working directory by cloning the TEX source
directory. Instead, it operates directly on the TEX source directory also creating
intermediate files, deleting them again by default after the build process. The
advantage of processing that way is, that this allows cooperation between this
software and other tool chains which are better suited for developing latex files.
Details are described in Section 3.6 an in particular in Section 3.6.2.

1As the specification is hard to digest, we refer to the tutorial [DHH02].

3.2. EXPORTING IN VARIOUS FORMATS AND CHECKING SOURCES 35

The downside is that a file residing in the TEX source directory risks being
overwritten or deleted by this software, if it does not stick to the rules. The rules
are simple:

• For each graphic file being transformed, i.e. of types 3 or 4 above, additional
files are created with the same name up to the suffix. Thus, for these graphic
files no file with the same name up to the ending is allowed.

• For LATEX main files more general files are created, but they all must match
those in pattern patternCreatedFromLatexMain described in Table 6.1 on
page 126. So it is save to add files not matching this pattern.

Note Section 3.5 which is on goal inj injecting diles in the TEX source directory
and Section 3.6.4 on goal grp processing graphic files which creates intermediate
files therein also.

To get rid of intermediate files, there is a separate goal clr described in
Section 3.6.5.

3.2 Exporting in various formats and checking
sources

After having added the configuration of the plugin to the pom.xml, minimally
the one given in Listing 2.2, it can be used directly invoking maven through mvn
latex:cfg. Here latex is the (short) name of the plugin and cfg is the goal.
It can also be interpreted as mvn <source>:<targets>: The source files are
in latex-format and the targets are read from the configuration in the pom
(configuration is what cfg stands for) which is illustrated in Listing 2.3. For a
detailed description of the setting targets see Table 6.1 on page 126. Here only
an overview is given.

By default, the targets configured are chk, pdf and html. The following
Listing 3.1 shows a configuration with the full range of output formats including in
addition the OpenOffice document format odt, the MS word-formats doc(x) and
rtf and also plain text format txt in utf8 encoding.

Note that the target docx converts by default into DOCX but may also be
configured to produce the old-fashioned DOC (outdated document format for MS
Word) format.

Be aware that the target dvi creates output in DVI format only for LATEX
engines lualatex and pdflatex, whereas xelatex creates the XDV (extended
DVI) format for target dvi.

Somehow special is the target chk which is mere checking by invoking chktex
without resulting output file. It just displays a warning if a rule is violated.

36 CHAPTER 3. USAGE OF PLUGIN AND TASK

<!−− crea t e html and pdf and o ther formats from l a t e x −−>
<plug in>

<groupId>eu.simuline.m2latex/groupId>
<a r t i f a c t I d>latex-maven-plugin</ a r t i f a c t I d>
<version>2.1</version>

<c o n f i g u r a t i o n>
<s e t t i n g s>

<t a r g e t s>chk , pdf , dvi , html , odt , docx , r t f , txt</ t a r g e t s>
</ s e t t i n g s>

</ c o n f i g u r a t i o n>
</ plug in>

Listing 3.1: Configuration with full range output formats

The resulting files in the given output formats are copied to the site directory,
which is ./target/site in a default maven project.

Sometimes it is more convenient to specify the output formats not via the pom
but directly as a goal on the command line. In particular, one may write mvn
latex:pdf to create documentation in PDF-format only. Likewise, command mvn
latex:dvi to get good old dvi/xdv files or even mvn latex:txt for plain text,
just as examples. Accordingly, mvn latex:chk performs a pure check. This occurs
preferably in the context of documentation development. In particular, checking is
treated separately in Section 3.6.3.

Note that the -X switch activates debugging which results in a more verbose
output. Example: mvn -X latex:cfg.

Although the possible targets can be configured globally via the setting targets,
the possible targets may depend on the document class of the LATEX main file.
At time of this writing, all document classes in preferred usage as defined in
Chapter 10 support all targets with obvious exceptions: Besides checking (target
chk) for obvious reasons the classes beamer, leaflet and the letter class scrlttr2
directly support only target pdf and because texts are created from PDF files, also
target txt. The mapping from document classes to allowed targets is given in setting
docClassesToTargets given in Table 6.1 on page 126. This parameter restricts
the targets given in parameter targets. As explained in detail in Section 3.1.1.2,
if a document class cannot be identified by the command documentclass or the
outdated documentstyle, it can be specified by a magic comment directly.

Finally, the targets can be specified individually for each LATEX main file using
a magic comment as described in Section 3.1.1.2. A target specification in a magic
comment overwrites all settings in targets and in docClassesToTargets. If a
magic comment specifies the targets directly, the document class need not be known.

3.3. CHECKING VERSIONS OF CONVERTERS 37

In particular, a magic comment only specifying targets identifies already a LATEX
main file as specified in Section 3.1.1.2.

As a magic comment can be used to specify the target formats for a LATEX main
file individually, Section 3.1.1.2 shows how to specify the LATEX engine to be used
for this file overwriting the general setting latex2pdfCommand in the pom given in
Table 6.4 on page 138.

In a standard maven project, the above minimal configuration should be suffi-
cient. Only if the folder structure deviates from the standard or if the LATEX sources
require special configuration, parameters have to be given explicitly, because they
deviate from the default values. Chapter 6 summarizes all available parameters,
giving the default value and a description.

For sake of uniformity, the name of the ant-task is latex:cfg, and it can be
invoked via ant latex:cfg. Unlike the maven-plugin, the ant-task does not allow
to specify a target on the command line. The -d switch activates debugging which
results in a more verbose output. Example: ant -d latex:cfg.

Whereas by default the target directory and in particular the target site directory
with all output of this plugin is deleted in maven’s clean life-cycle, the tools invoked
by this software also create intermediate files in the source directory. By default,
i.e. for setting <cleanUp>true</cleanUp>, all files created in the source directory
in the last run are cleaned. Nevertheless, for document development intermediate
files are vital and so cleanup is frequently set to false. In this case, cleanup must
be done in a separate goal, described in Section 3.6.5.

3.3 Checking versions of converters
The goal vrs is to display meta information, above all version information:

mvn latex:vrs

displays something like what is displayed in Listing 3.2. Besides information on this
software including version and even git commits, there are information on so-called
registered converters, i.e. converters intended to be invoked by this software.

The goal yields a full list of registered converters, signifying which of them are
excluded according to parameter convertersExcluded, which are not installed,
and for each of the rest, the actual version, the allowed range and a warning if the
actual version is out of range.

The parameter convertersExcluded is described in Table 6.1 on page 126.
Excluded converters are prevented from being used: if tried, Exception TSS07 de-
scribed in Table 7.4 on page 163 is thrown. If a converter is not installed, but tired
to be used, this kind of failure is obvious. Only if a converter is used with an unin-
tended version bears some risk. Note that also unregistered converters can be used;

38 CHAPTER 3. USAGE OF PLUGIN AND TASK

but then the user is responsible to provide an appropriate version. An example for
an unregistered converter is given in Table 6.8 on page 146: pythontexW:pythontex
indicating the converter pythontexW with category pythontex.

As one can see, a warning WMI02 indicates that the version of a converter
is out of the intended range, provided, the converter is installed, and it is not
excluded according to the configuration convertersExcluded.

Note that in the given version and in the installation of the author, of course,
all converters are installed and are up-to-date to be able to check validity. The
according messages are forced for illustration only. For a user of this software which
does no development, of course only converters need to be installed which are really
needed.

3.4 Logging of errors and warnings
It is a design goal to notify the user of formal deficiencies of the created documents
by tight logging of errors and warnings to give high confidence in the formal
quality of the result in the absence of errors and warnings. Logging is devoted all
of Chapter 7. Of particular intestest is Table 7.8 on failures running a tool on
page 166. We highlight

• Check of return codes

• absent/outdated target files or log files

• log files containing errors and warnings (provided by many but not all tools).
Among those notification of bad boxes.

3.5 Injection of files
The goal inj is to inject files into the working directory texSrcDirectory, during
a maven lifecycle, by default in phase valiate, or from command line invoked
from the root directory and injecting into that root. The files injected into
texSrcDirectory are in general adapted to the current configuration of the plugin;
the others are auxiliary files valid in any project using this LATEX plugin.

Note that each of these files is written only if it is guaranteed that only files
written by this plugin are overwritten. This is the case, if no file is overwritten at
all or if the file to be overwritten is recognized to start with a comment indicating
that this file is written by this plugin. Of course the guarantee holds only if the
headline does not tell a lie: one can always manipulate.

If the headline cannot be read or in some other exotic conditions, it cannot be
ensured that the files are written by this software, and so they are not overwritten

3.5. INJECTION OF FILES 39

[INFO] −−− latex:2.0−SNAPSHOT: vrs (default−cl i) @ latex−maven−plugin −−−
[INFO] Manifest properties :
[INFO] MANIFEST: (1.0)
[INFO] Implementation−Version : '2.0−SNAPSHOT'
[INFO] PackageImplementation−Version : '2.0−SNAPSHOT'
[INFO] pom properties :
[INFO] coordinate .groupId: 'eu. simuline .m2latex'
[INFO] coordinate . artifactId : ' latex−maven−plugin '
[INFO] coordinate . version : '2.0−SNAPSHOT'
[INFO] git properties :
[INFO] build version : '2.0−SNAPSHOT'
[INFO] commit id desc : ' latex−maven−plugin−1.8−209−g5ac27b7−dirty '
[INFO] buildTime: '2023−06−25T23:31:20+0200'
[INFO] tool versions :
[INFO] ?warn? command 'actual version '(not)in [expected version interval]
[INFO] mvn: '3.9.4 ' in [3.9.1;3.9.4]
[INFO] ant: '1.10.14 ' in [1.10.12;1.10.14]
[INFO] java : '17.0.9 ' in [17.0.9]
[INFO] python: '3.11.6 ' in [3.11.6]
[INFO] perl : '5.38.2 ' in [5.38.2]
[INFO] pdflatex : '1.40.25 ' in [1.40.21;1.40.25]
[INFO] lualatex : '1.17.0 ' in [1.12.0;1.17.0]
[INFO] xelatex : '0.999995'in[0.999992;0.999995]
[INFO] latex2rtf : '2.3.18 r1267 ' in [2.3.16 r1254;2.3.18 r1267]
[INFO] odt2doc: '0.9.0 ' in [0.9.0]
[INFO] pdftotext : '23.11.0 ' in [21.04.0;23.11.0]
[INFO] dvips : '2023.1' in[2020.1;2023.1]
[INFO] dvipdfm: '20220710'in[20210318;20220710]
[INFO] dvipdfmx: '20220710'in[20200315;20220710]
[INFO] xdvipdfmx: '20220710'in[20200315;20220710]
[INFO] dvipdft : '20090604.0046'in[20090604.0046]
[INFO] gs : '9.56.1 ' in [9.52.0;9.56.1]
[INFO] chktex: '1.7.8 ' in [1.7.8]
[INFO] diff−pdf−visually : '1.7.0 ' in [1.6.4;1.7.0]
[INFO] diff−pdf : '300'in [300]
[INFO] diff : '3.10 ' in [3.8;3.10]
[INFO] pdfinfo : '23.11.0 ' in [22.01.0;23.11.0]
[INFO] exiftool : '12.71 ' in [12.39;12.71]
[INFO] bibtex : '0.99d' in[0.99d]
[INFO] bibtexu : '4.00 ' in [4.00;4.00]
[INFO] bibtex8 : '4.00 ' in [4.00;4.00]
[WARNING] WMI02: makeindex: '2.17 'not in [2.15;2.16]
[INFO] splitindex : '0.1 ' in [0.1]
[INFO] makeglossaries : '4.51 ' in [4.45;4.51]
[INFO] pythontex: '0.18 ' in [0.17;0.18]
[INFO] depythontex: '0.18 ' in [0.17;0.18]
[INFO] mpost: '2.02 ' in [2.00;2.02]
[INFO] ebb: '20220710'in[20200315;20220710]
[INFO] gnuplot : '5.4 patchlevel 10'in [5.4 patchlevel 0;5.4 patchlevel 10]
[INFO] inkscape : '1.3.2 ' in [1.0.2;1.3.2]
[INFO] fig2dev : '3.2.9 ' in [3.2.7b;3.2.9]
[INFO] tools excluded:
[INFO] upmendex, xindy
[INFO] tools not found:
[INFO] latexmk
[INFO] −−

Listing 3.2: Output of goal latex:vrs

40 CHAPTER 3. USAGE OF PLUGIN AND TASK

by goal inj. Accordingly, as described in Section 3.6.5, the files not overwritten by
goal ini are precisely the files not erased by goal clr. In case of such a doubt, a
warning is displayed.

That way, injected files written by the plugin can be updated each run, which
is necessary to keep them synchronized with the configuration of this plugin, but
according files written e.g. by the user are protected.

A first description of the goal inj is given by

mvn latex:help -Ddetail -Dgoal=inj

which yields a list of files which can be injected. Note the distinction between the
injection, which is the act of injecting and the according file which is injected.

The set of injections can be divided into the following categories according to
the function of the files injected:

• Configuration files for latexmk and chktex. These are hidden files reflecting
the settings of this plugin and form the default for latexmk and for chktex,
i.e. behavior without command line options. In particular, the configuration
file of latexmk is adapted to the configuration of this plugin, to ensure that
the results are the same whether created by latexmk or by this plugin.

• Header files are intended to be included in TEX files. They load packages
and provide commands. In general, header files are designed to run on all
usual LATEX compilers, with various document classes and take creation of
PDF into account but also of other formats like HTML and also of DVI/XDV
which is an important intermediate format.
The packages are loaded with minimum options, but these can be modified out-
side the headers by \PassOptionsToPackage as described in Section 3.1.1.1.
At the time of this writing, they are the same for all settings, but adapt to
the settings by a system of if-statements. For example the headers are the
same, independently of the LATEX compiler. Instead, the headers detect the
compiler by need at runtime.

• Script files which are intended to run by the user supporting the automatic
build process “from outside” above all in the course of document development.
Thus, usually, their injection is triggered selectively from the command line
invoked from the project root as described below. In contrast to the files in the
other categories, these are executable are not injected into texSrcDirectory.
They are not adapted to the configuration but shall be used globally. Thus,
it makes sense to make them available for execution by moving them to
appropriate places like /usr/bin on linux systems.

3.5. INJECTION OF FILES 41

Table 3.1 shows the possible injections and the ones really to be performed are
given in the configuration injections. This configuration is described in Section 6.3
on page 131. It is a comma separated list and the default is latexmkrc,chktexrc,
representing the configuration files.

Name File explanation
configuration files
latexmkrc .latexmkrc config file for latexmk
chktexrc .chktexrc config file for chktex
header files
header header.tex fundamental
headerGrp headerGrp.tex for graphics
headerSuppressMetaPDF headerSuppressMetaPDF.tex to control PDF meta-info
shell scripts
vscodeExt instVScode4tex.sh installs VS Code extensions
ntlatex ntlatex timeless LATEX compiler
vmdiff vmdiff special diff tool for PDF files
pythontexW pythontexW surrogate for pythontex
depythontexW depythontexW surrogate for depythontex

Table 3.1: Overview over all injections

As described in Section 2.2.3, by default the goal inj is tied to the maven phase
validate, an early phase preparing the proper build process, because the injected
files are a prerequisite for building. Then the files are injected in the TEX root
directory texSrcDirectory.

On the other hand, injections can be also invoked by command line via mvn
latex:inj with the default injections or, with given list of injections, e.g.

mvn latex:inj -Dlatex.injections=vscodeExt,ntlatex,vmdiff

In fact, injection from command line is typically used for scripts, whereas the others
files are injected during the build process in phase validate. Of course maven is
invoked from the project root and there also the prescribed files are injected.

Note that the folder where cleanup of injections with mvn clean is done, depends
also on whether -Dlatex.injections=… is specified, but the value is irrelevant as
long as it is valid.

In the sequel, all these injections are described in detail separately, but in
fact they are all related. For example, header.tex handles the possible config-
urations reflected in .latexmkrc. It provides packages used in headerGrp.tex
and provides commands to exclude checking by chktex controlled by .chktexrc.

42 CHAPTER 3. USAGE OF PLUGIN AND TASK

The header header.tex is very crucial for example controlling and guaranteeing
rerun of the LATEX engine by including package rerunfilecheck. Its presence
makes the results uniform and is a cornerstone for quality guarantees. As said
above, the default for injections is latexmkrc,chktexrc, but it is advisable to use
latexmkrc,chktexrc,header.

Now let us treat the injections individually.

3.5.1 The configuration files .latexmkrc and .chktexrc

For document development the tool latexmk is a valuable build tool. Also, a linter
like chktex is helpful both for end control and for document development.

The file .latexmkrc tied to the injection latexmkrc is the configuration file for
the build tool latexmk and likewise .chktexrc tied to the injection chktexrc is the
configuration file for the style check tool chktex. The configuration files determine
the behavior of the two tools without further options, i.e. the default behavior.
The user is kindly asked to help to improve these files, in particular .chktexrc.

Ideally, the injected .latexmkrc is adapted to the current settings of this
plugin and so invoking latexmk invoked with its configuration file behaves like
this latex plugin. Thus, latexmk is intended to be used with additional options
in exceptional cases only. Currently, not all possible settings of this plugin are
taken into account in the .latexmkrc, but the magic comments in the source files
described in Section 3.1.1.2 are read and taken into account as far as this makes
sense.

For default settings, maybe partially overwritten by magic comments, this maven
plugin and latexmk create the same target files. This is true even for creating this
manual which presents and uses a maximum variety of features of this software.
In particular, the graphic formats described in Chapter 4 are supported. So are
bibliographies, indices and glossaries and also material computed by pythontex as
described in Chapter 5, but without reflecting all options and patters to supervise
log files. Also, reproducibility check is supported including magic comments and
all parameters.

At time of this writing, .latexmkrc works for various LATEX generators but
supports target pdf only, although in the long run also chk and dvi could be useful.
Still, creation of PDF files is supported in both variants, via DVI/XDV or directly.
Compilation via latexmk is based on code in .latexmkrc and this mimics a wide
range of functionality offered by this tool. Among these are also reproducibility
checks as described in Section 5.8

A sensible config file .chktexrc mainly depends on the packages loaded. In
Section 3.5.2 we suggest injecting also a header file header.tex loading packages.
The config file .chktexrc is adapted to the header file header.tex.

https://www.simuline.eu/LatexMavenPlugin/fromTex/.latexmkrc
https://www.simuline.eu/LatexMavenPlugin/fromTex/.chktexrc

3.5. INJECTION OF FILES 43

Observe, that due to an incompatibility between tool latexmk and package
listings, this manual can only be compiled with latexmk if listings is not only
loaded but also patched as done by header.tex and described in Section 3.5.2.
With that patch, this software yields the same resulting PDF file as compilation
with latexmk.

Currently, .chktexrc serves only to suppress warnings, mainly on material
which is the argument of commands or the content of an environment. What is really
needed depends on the packages loaded and on the commands and environments
defined in addition.

Since basic packages are loaded and basic commands are defined in the injected
header.tex which is described in Section 3.5.2, it makes sense, to synchronize
.chktex and header.tex.

As an example, package listings which provides the environment lstlisting
and the command \listinputlisting. The content of both shall not be subject
to checks via chktex and must thus be excluded in .chktexrc. The role of
header.tex in this context is, to detect whether listings and, if so, to patch it.
Among other things, this allows to compile the document not only with the internal
build mechanism of this plugin, but also by latexmk with good performance.

All this together illustrates why it is recommended to inject besides the default
.chktexrc and .latexmkrc also header.tex.

As described in Sections 3.6.2 and 3.6.3, both tools chktex and latexmk are
invoked directly by the user in the course of document development, but they may
be invoked by this LATEX builder in the course of a regular build, i.e. for maven
goal cfg also. So their respective configuration files must be injected in the maven
build process before the LATEX build tools are invoked, i.e. prior to the phase site.
Thus, goal inj has default phase validate.

As described in [Col23], Section “CONFIGURATION/INITIALIZATION (RC)
FILES”, there are various configuration files latexmkrc or .latexmkrc, among
these a global one, a local one referring to the enclosing folder, and finally one
specified by the command line option -r which is described in [Col23], Section “LA-
TEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE”.

Likewise, [Thi22], Section 6.1.3, shows that also chktex has a global configu-
ration file chktexrc and a local one .chktexrc or chktexrc, depending on the
operating system. Finally, a configuration file can be specified with the option -l,
according to [Thi22], Section 6.1.1. Unfortunately, [Thi22] does not tell about the
ordering in which the configuration file given by the option -l is read in.

For sake of reproducibility, we recommend restricting to the global configuration
file which is tied to the installation and to a local file, specific to the latex source
directory which shall be valid for all LATEX main files in that directory.

Goal inj injects the configuration files .latexmkrc, .chktexrc and further files,

44 CHAPTER 3. USAGE OF PLUGIN AND TASK

all in the latex source directory. It is natural to use each as the local configuration
file.

Caution: According to [Thi22], Section 6.1.3, as described, the local config-
uration file fits only for UNIX-like operating systems. For Windows and that
like, chktexrc is expected instead of .chktexrc. Uniformity with respect to the
operating systems can be realized with a link to chktexrc named .chktexrc. That
way independent of the operating system, the configuration files .latexmkrc and
.chktexrc are sufficient.

It is important that there is a unique central configuration file applying to all
LATEX main files. There is the choice between at least two mechanisms to ensure
this: Either latexmk and chktex are invoked with options -r and -l, respectively,
specifying the configuration file explicitly or for each folder containing a LATEX
main file there must be a link named .latexmkrc and .chktexrc, respectively, to
the according central configuration file.

We recommend using links because then latexmk and chktex can be used on
the command line without further options. This is convenient for the user when
invoking the tools directly which is the typical usage for document development.

3.5.2 A generic header file header.tex

It is observed that the headers of various LATEX files are quite similar. In particular
the packages loaded have a huge overlap and at the same time, although rare,
exotic packages tend to be loaded which may be replaced by standard ones. This
hurts single source principle and at the same times makes it almost impossible for
a build tool as this one, to make guarantees that it works still with the unexpected
packages. This is, e.g. because a package may write warnings in an unexpected
format into some log file.

The injection header is tied to the file header.tex, which is intended to be
included in each LATEX main file. Essentially it includes packages always needed.
It is inspired by the packages pandoc includes by default according to https:
//pandoc.org/MANUAL.html#creating-a-pdf.

Some loaded packages are also patched. The patch for package listings is
given in Listing 3.3. It applies only if listings is loaded prior input of header.tex.
One modification is, redefinition of \lstlistoflistings to make the list of listings
occur in the table of contents and to rename the title so that it fits other lists
as the list of figures. The other point is modifying listings’ output to make it
digestible for latexmk. For details see Section 3.6.2.

The other package patched is luamplib; the patch is given in Listing 3.4. It
applies only if luamplib is loaded prior input of header.tex. As discussed in
Section 4.5, luamplib is available for lualatex only. It provides an environment
mplibcode to enclose literal MetaPost. The enhancement is an additional com-

https://www.simuline.eu/LatexMavenPlugin/fromTex/header.tex
https://pandoc.org/MANUAL.html#creating-a-pdf
https://pandoc.org/MANUAL.html#creating-a-pdf

3.5. INJECTION OF FILES 45

% t h i s indirec t ion i s needed because \makeatletter , \makeatother and \xpatchcmd
% don ' t work ins ide an argument as discussed in
% https :// tex . stackexchange .com/questions /719158/
% does−ifpackage loadedt f−neutra l i ze−xpatch
\newif\ i f l i s t i n g s l o a d e d%
\IfPackageLoadedTF{ l i s t i n g s }{%

\ l i s t ing s l oadedt rue%
}{%

\ l i s t i n g s l o a d e d f a l s e%
}

\ i f l i s t i n g s l o a d e d%
\renewcommand{\ l s t l i s t o f l i s t i n g s }{\begingroup
%\ tocsect ion
%\tocchapter
\ t o c f i l e { List of \ l s t l i s t ingname {}s}{ l o l }
\endgroup}

% t h i s i s a workaround for including l i s t i n g s with latexmk . .
% This can be f i xed
% − as shown below
% see ht tps :// tex . stackexchange .com/questions /685257/
% latexmkcan−include−f i l e s −created−during−the−latexmk−run−except−with−l s t i n p
% − patch in package l i s t i n g s
% − patch in latexmk
% I would prefer the l a t t e r .
\usepackage{xpatch}
\makeatletter
\newcommand∗{\NewLine}{^^J}%
\xpatchcmd{\ lst@MissingFileError }
{Package Li s t ings Error : F i l e `#1(.#2)' not found .}
{LaTeX Error : F i l e `#1.#2' not found .\ NewLine}{%

\typeout{ Fi l e ending patch for \string\ lst@MissingFileError \space done .}%
}{%

\typeout{ Fi l e ending patch for \string\ lst@MissingFileError \space f a i l e d .}%
}
\makeatother

\ f i

Listing 3.3: A patch of the listings package

46 CHAPTER 3. USAGE OF PLUGIN AND TASK

\IfPackageLoadedTF{luamplib}{%
\newcommand∗\inputmpcode [1]{\ begin{mplibcode}input #1\end{mplibcode}}

}{}% \IfPackageLoadedTF{ luamplib}

Listing 3.4: A patch of the luamplib package

mand \inputmpcode which allows including MetaPost files. This functionality
is analogous to package listings which allows both literal listings and loading
listings from files. MetaPost code within a LATEX document typically disturbs
syntax highlighting of both, enclosing code and included code.

Besides loading packages it also sets synctex which is crucial for synchronizing
TEX files and according PDF files via forward search and backward search as
described in Section 3.6.1.

It also provides the command \setMinorVersionPdf to set the minor version
of the PDF file created. This is mostly needed because some graphic tool creates
PDF files with a newer PDF version than the LATEX distribution does. Setting
the version high enough, avoids an according warning WAP03 listed in Table 7.8 on
page 166. The warning pattern is described in Section 6.5.2 in detail. As described
in [MF23], Section 2 the recommended way to set major and minor version of the
PDF output like in \DocumentMetadata{pdfversion=1.7}, but due to a bug, any
invocation of \DocumentMetadata corrupts reproducibility of the created PDFs.
After this is fixed, the \setMinorVersionPdf shall be removed again.

Another class of commands provided is represented by \textttNoChk which
sets the argument in typewriter font just like \texttt but for which checks by
chktex are suppressed. Another example for this kind of command is \inputNoChk
which may be used to input either generated material like TikZ, or text which is
no LATEX at all. For details see Sections 3.5.1 and 3.6.3.

As the configuration files described above, header.tex is intended to be injected
in phase validate.

Note that header.tex is written for use of

• various LATEX enginess, lualatex, xelatex and pdflatex

• various document classes, specifically article, book, beamer for presenta-
tions, leaflet and the letter class scrlttr2.

• for creating PDF files, but futher formats created with tex4ht as well

• direct creation of PDF and via intermediate DVI/XDV

Which packages are loaded at all and if loaded their options, depend on the
LATEX compiler, the output/intermediate format, the document class, packages
loaded before and maybe on other criteria.

3.5. INJECTION OF FILES 47

This is realized with a bunch of if-constructs. In the long run, header.tex
could be adapted to the configuration as .latexmkrc, but currently it detects the
use case as the LATEX engine or the target format and loads the according packages.
It is also conceivable to create different headers, one for each document class.

3.5.3 A header file for graphics via package graphicx

Chapter 4 lists various techniques to include graphics into a LATEX document. Most
are based on the package graphicx and related packages. The injection headerGrp
is tied to the file headerGrp.tex, which is intended to be included in the LATEX
main file after header.tex described in Section 3.5.2 and which loads the packages
required for that kind of graphics by need and with the appropriate options,
depending on the LATEX compiler, the output/intermediate format, packages loaded
before and maybe on other criteria.

3.5.4 A header file to suppress meta-info for PDF files
Whereas the header file described in Section 3.5.2 is intended to be used in merely
any LATEX main file, the one described here, is optional.

It refers to created PDF files only and does not influence the optical appearance
but suppresses writing certain meta-data. The main motivation is security, i.e.
privacy, but it can also be used to turn the resulting PDF reproducible.

The injection headerSuppressMetaPDF is tied to headerSuppressMetaPDF.tex.
Above all, it suppresses information on creation and modification time, on the tool
chain used and the trailer identifier. By intention the latter changes in each build
run even if the sources are the same. Typically, this is implemented merging the
current time into the build process. The trailer identifier is fixed by the header
file and so created PDF files created from the same sources are the same, except if
date and time are included manually, as e.g. by the command \today, except for
xelatex, which uses the system time to create further hash codes. So, including
headerSuppressMetaPDF.tex may serve to create reproducible PDF files. As
described in Section 5.8, the mainstream technique to reach reproducibility is
via manipulating the system time, but if an environment does not support this,
including headerSuppressMetaPDF.tex is a fallback strategy, if not using xelatex.

The extent to which meta info is suppressed is inspired by reproducibility
but above all, it is subjective. It is planned to make it configurable, i.e. the
file headerSuppressMetaPDF.tex is created according to security settings of this
maven plugin.

For further information on meta info in PDF files related with security and
reproducibility see [Rei23b], Section 4 and how this software treats the handles the
issues see Section 5.8.

https://www.simuline.eu/LatexMavenPlugin/fromTex/headerGrp.tex
https://www.simuline.eu/LatexMavenPlugin/fromTex/headerSuppressMetaPDF.tex

48 CHAPTER 3. USAGE OF PLUGIN AND TASK

3.5.5 An installation script for VS Code Extensions
Calling from project root

mvn latex:inj -Dlatex.injections=vscodeExt,latexmkrc

injects the according files instVScode4tex.sh and .latexmkrc.
The configuration file .latexmkrc for the development tool latexmk is in fact

a Perl script which is invoked at latexmk’s startup.
If the editor VS Code is already installed, the script instVScode4tex.sh,

installs and updates all extensions of VS Code the author used to write LATEX-code.
Project https://github.com/Reissner/QMngMnt uses the script for automation
of installation and update.

Provided the extensions given by instVScode4tex.sh are installed, opening
.latexmkrc, which is just Perl code, in VS Code, one can see the highlighting.

3.5.6 Scripts in conjunction with reproducibility
Calling from project root

mvn latex:inj -Dlatex.injections=ntlatex,vmdiff

injects the according files ntlatex and vmdiff in the root directory.
The injection ntlatex injects the file ntlatex which runs the LATEX compiler

specified in the pom, or in the magic comments if present, to create a PDF file.
As usual, magic comments override configuration in the pom. Also, it takes into
account whether the PDF file is created via intermediate DVI/XDV files or not,
depending on the configuration.

This invocation takes also processing time and the timezone into account to
guarantee reproducibility if so configured. As latexmk is, also ntlatex shall be
independent of the configuration given by the pom. This is realized in the same way,
namely by encoding the configuration in the injection .latexmkrc. The downside
is, that ntlatex like latexmk requires Perl to work. For details see Section 5.8 on
reproducibility.

But if ntlatex so close to latexmk, why is it needed in addition? It is because
latexmk won’t recompile, if the expected PDF file exist already and no sources
changed. So ntlatex is needed to force recompilation.

It is easy to see, that ntlatex is helpful also during document development for
fixing bugs and to detect the cause of compilation errors.

Complementary to this vmdiff is a diff tool for PDF files combining visual
equality checked with diff-pdf-visually with equality of metadata checked via
pdfinfo if the files are visually the same. It is realized as a bash script vmdiff and
requires no installation except diff-pdf-visually and pdfinfo.

https://www.simuline.eu/LatexMavenPlugin/fromMain/instVScode4tex
https://github.com/Reissner/QMngMnt
https://www.simuline.eu/LatexMavenPlugin/fromTex/.latexmkrc
https://www.simuline.eu/LatexMavenPlugin/fromMain/ntlatex
https://www.simuline.eu/LatexMavenPlugin/fromMain/ntlatex

3.6. DEVELOPMENT OF DOCUMENTS 49

3.5.7 Script (de)pythontexW patching (de)pythontex

Calling from project root

mvn latex:inj -Dlatex.injections=pythontexW,depythontexW

injects the according files pythontexW and depythontexW which just invokes
(de)pythontex but does not simply output feedback on stdout but besides doing
so writes it in a log file. This is needed to provide an interface usual in the TEX
ecosystem.

Note that all this is specific for unix -like operating systems but can be easily
adapted to windows.

3.6 Development of documents
The term “development of documents” is coined by the author and reflects that
writing a document resembles developing software in that it is an iterative process
consisting in producing pieces of information, checking, modifying, correcting,
erasing it, checking again…. After initial creation, is like a dialog between the
author and its work.

This is true of course independent of the tools used, but some tools support this
process better than others. For document development the ideal are WYSIWYG
(“what you see is what you get”) editors, which should maybe be better called
WYRIWYR (“what you write is what you read”), or, taking also drawings into
account, IllO (“input looks like output”). For software development the ideal
languages are prototyping languages, interpreted at least.

From that point of view, LATEX and friends is the worst conceivable choice:

• You write in an editor, but you read off from a viewer. So you must perma-
nently switch your attention.

• You write a sequence of commands, but you read text, formulae, drawings.
In a sense you program the appearance of a page or site.
This discrepancy becomes particularly apparent when creating a drawing in
LATEX, e.g. with TikZ, because even drawings are described or programmed
quite formally.

• You cannot just see instantly the result of your work; first you have to trigger
a compilation process and wait some time. So, besides an editor and a viewer
you also need some kind of console. It is even worse: Typically, based on the
console output you must either rerun the LATEX engine or run some auxiliary
program, even more of them and then again the compiler, maybe several

https://www.simuline.eu/LatexMavenPlugin/fromMain/pythontexW
https://www.simuline.eu/LatexMavenPlugin/fromMain/depythontexW

50 CHAPTER 3. USAGE OF PLUGIN AND TASK

times. The decision whether the viewer shows the final result already, or
whether another command has to be issued and if so which one, is based on
the console output2. So part of your attention must be on the console also.
The console is also used to issue the next command.

• The compilation process may go wrong or be in a sense deficient, so what
you need is observing logs, either on the console or in a log file. Even if
the input is accepted by build tools even without warning, still there may
be something wrong. The LATEX tools do not include any spell checking or
grammar checking. Since LATEX documents are in a sense programmed, an
additional burden is the need for a kind of linting, which is done, e.g. by
chktex. This must be invoked manually and yields another log file, although
no output.

The situation is visualized in Figure 3.1. It is no UML diagram although using
elements of UML. The developer of the document (it may or may not be the
author) is visualized as a stick figure and the tools used for development are the
boxes surrounding it, resembling instances in a UML class diagram. Besides the
tool under consideration, the according files are shown. The console is to invoke
conversion commands like lualatex. This shows already, that the user does not
face a single counterpart, but has to juggle with a bunch of tools at once. The
arrows represent data flows. If this data comprises commands the lines are solid,
else they are dashed.

This explains the need for tools and techniques to mitigate the situation.
At first sight, this LATEX-builder is not to contribute to document development,

because it is used after the end of the development process, automating the
compilation process. Since the LATEX-builder is also a checker tool, supervising
even warnings, e.g. on bad boxes, and by default invoking chktex and monitoring
its log file, and since compilation may always fail, the LATEX-builder may initiate
another loop in the development process.

Before describing the contribution of this LATEX-builder to the process of docu-
ment development, let us describe the process of document development in more
detail, in particular the other tools supporting document development and their
interaction. With this background in mind, it is easier to describe the role of the
LATEX-builder in the team of development tools.

The minimum needed to develop a document in LATEX are an editor, an according
viewer and the LATEX tools for build and check as described in Section 3.6.1. As
described above, using this basic tools directly distracts much of the attention of
the author/developer from the content. Thus, it is a good idea to use a tool to

2What is worse, there are cases where the console output fails to contain a hint to rerun some
program.

3.6. DEVELOPMENT OF DOCUMENTS 51

typing

developer

source editor
*.tex
*.mp
...

source viewer
*.pdf
*.mps
...

log viewer
*.log
*.blg
...

console

Figure 3.1: Document development with base tools

orchestrate the LATEX tools. The author of this software prefers the orchestration
tool latexmk which is described in Section 3.6.2.

The check tool chktex and the according goal chk are already described in
Section 3.2. Nevertheless, the aspects of checking in the context of document
development is treated separately in Section 3.6.3.

The goals grp and clr described in Sections 3.6.4 and 3.6.5 make sense only in
the context of document development. For details see these sections.

Finally, Section 3.6.6 is on installing extensions for document development on
the editor VS Code. To that end, this software provides an installation script.

3.6.1 Editors, viewers and LATEX
Although there are alternatives like Emacs with extension AUCTEX, the author
recommends using VS Code in conjunction with extensions to write and build
LATEX documents and to view the results on okular. The recommended extensions
are those installed by the script instVScode4tex.sh described in Section 3.6.6.

Most of the recommended extensions of VS Code are to highlight the code of
the various file types, one, LTEX is a spell and grammar checker, but the central
extension is james-yu.latex-workshop which also provides build functionality.
Among the build “recipies” is latexmk (latexmkrc) which is recommended be-
cause it integrates well with build tool latexmk described in Section 3.6.2 in a way
which integrates latexmk well with this LATEX builder. Note that LATEX Workshop

52 CHAPTER 3. USAGE OF PLUGIN AND TASK

also offers a command “clean up”, corresponding with goal clr of this software
which is described in more detail in Section 3.6.5

As a PDF viewer, we use okular with settings given by the menu “settings”
and submenu “configure okular”. To make okular update as soon as the PDF
changes, in tab General

• deselect show backend selection dialog and

• select reload document on file change.

To enable backward search described below, in tab Editor choose “custom
editor” and type

code -r --goto %f:%l

Together the “general” settings make okular update automatically when a new
PDF occurs.

As an HTML viewer any of the usual browsers is usable; they all update as
soon as the rendered HMTL file changes.

Still it is a problem to synchronize editor and viewer. As far as the author
knows, synchronization is possible only for PDF viewers. Synchronization means
at least that for a position on the editor, the according position on the viewer must
easily be found and vice versa. Even better would be if moving in the editor selects
the according site at the viewer and the other way round. These two features are
called forward search and backward search, respectively. If the LATEX main file has
a setting synchtex=1 or synchtex=-1, then the created PDF has the according
information. Then for VS Code with LATEX Workshop offers forward search: the
keystroke ctrl-alt-j makes the viewer move to the site corresponding with the
cursor position. For the viewer okular, backward search is configured in tab
“editor” as described above, and it works with the browse tool just hovering over
the location of interest and pressing shift plus mouse left key.

This software supports forward and backward search in that it offers injection
of a header file header.tex which sets synchtex=1 and offers injection of an
installation script instVScode4tex.sh which allows installation of the relevant
extensions of VS Code.

Besides the separation of editor and viewer, the time delay between writing and
reading disturbs document development. LATEX has a way to speed up compilation:
compiling only parts of a longer document which are under construction and which
may thus change. These parts must be in separate TEX files and must be included
with \include not just input using \input. With the command \includeonly
one can specify the files to be recompiled. This works particularly well for document
class book when including chapters because each chapter starts with a new page,

3.6. DEVELOPMENT OF DOCUMENTS 53

so, page breaks are the same whether compiling a chapter with \includeonly or
compiling the whole document.

This plugin supports partial compilation insofar as the goal clr described in
Section 3.6.5 eliminates additional AUX files tied to included sections.

3.6.2 The build tool latexmk

Essentially, it is possible to compile latex files only with editor, viewer and a console.
Let us collect the challenges. The document may contain graphic files which must
be precompiled by further tools and thus be invoked a priori on the console. For
FIG files this is fig2dev. This invocation must be repeated as soon as a FIG file
changes3.

Then a LATEX engine like lualatex must be invoked. Typically, the LATEX
engine must be invoked more than once and besides the LATEX engine typically
some further auxiliary programs like makeindex must be run. The console displays
indications to the user what action to be taken next. Normally after invocation of
an auxiliary program, the LATEX engine must be rerun at least once. Each of the
programs may fail. Most of the programs write success messages and more detailed
information containing error messages, warnings or just information messages on
the console and in their respective log files. Potentially, these influence the actions
the user must take next.

What is needed, is a tool for orchestration of the basic tools: Orchestration
means invoking more basic tools in a reasonable order and supervising the results,
at least success and to react appropriately. This frees the user from deciding which
of the many auxiliary programs are to be invoked next and whether the LATEX
engine or an auxiliary program is to be invoked once more to get final correct
output. Also, an orchestration tool detects if a build fails or ideally even if a
warning indicates that the result is not correct or maybe only not ideal.

There is a tool doing this work, latexmk, except that it does not care about
warnings.

If something goes wrong, and it is not clear what, it is typically a good idea
to fall back to the more basic tools. A great point with latexmk is, that this is
possible without any problem, and it is as simple to switch back from basic tools
to latexmk. This is what we mean saying that latexmk integrates the basic tools.

The best way to invoke latexmk for document development is

latexmk -pvc latexFile

3Typically, this triggers a sequence of invocations of converters along files one depending on
the other.

54 CHAPTER 3. USAGE OF PLUGIN AND TASK

According to [Col23], Section “DESCRIPTION”, the option -pvc is shorthand
for “preview continuously”, a kind of nonstop mode: The PDF file, or whatsoever
is created if not present, then a viewer is opened in the background if not yet open
and then latexmk monitors changes of dependencies and triggers a rebuild each
time a change is detected performing a proper sequence of invocations of LATEX
engines and auxiliary tools. Note that latexmk does not stop after finishing a
compilation, whether successful or not. Instead, it awaits a change of a source file
which triggers a new run of some basic tool until interrupted by the user. The
option -pvc is described in more detail in [Col23], Section “LATEXMK OPTIONS
AND ARGUMENTS ON COMMAND LINE”. One detail to be added, mentioned
in [Col23], Section “DESCRIPTION”, is, that latexmk detects dependencies based
on the FLS file written by the LATEX engine when invoked with the -recorder
option.

A small fallback step advisable if something goes wrong is to interrupt continuous
viewing and to invoke latexmk without options. Then latexmk performs a single
build and finishes; no viewer is opened. This may help in understanding the
problem, but in general, it is advisable to go back to basic tools like lualatex. To
understand the build process from scratch, erase all created files by latexmk -C or
all intermediate files by latexmk -c, which does not erase the resulting PDF file,
before using the basic tools.

3.6.2.1 Differences of latexmk with this LATEX builder

Let us discuss the differences between latexmk and this latex plugin: First, the
plugin runs within a maven process which introduces a lot of overhead. So this
cannot be as fast as latexmk is. In addition, a maven plugin cannot open a viewer.
Moreover, the plugin is designed to build all LATEX main files and not to focus on a
single one. In many cases, more than one output format shall be created. The latter
properties which are disadvantages in the context of document development, can be
overcome, by specifying a single target in the setting targets or by invoking goals
with a single target, e.g. by mvn latex:pdf and to restrict to building a subset of
files and if needed a single LATEX main file with the settings mainFilesExcluded
or mainFilesIncluded described in Table 6.1 on page 126.

Another difference is, that by default, the plugin cleans up the folder with the
TEX sources, and only the resulting file, e.g. PDF, is copied to the target folder
before cleanup. To be more precise, only the files present before the build are kept,
possibly updated, all the others are removed. This is appropriate for a maven
plugin but destroys log files containing vital information if the build goes wrong.
Still if a file is interesting, it may be created by touch or by some basic latex tool
as lualatex or makeindex and then a build done by this plugin will pertain the file
updated by the build process. For document development, the parameter cleanUp,

3.6. DEVELOPMENT OF DOCUMENTS 55

also described in Table 6.1, which is true by default, can be set to false so that
no file in the latex directory is deleted.

So, it is clear that this plugin is for final global build with a lot of supervision
sensitive to detecting caveats. To overcome these, further development of the docu-
ment is necessary, which is better done individually on the problematic document
with latexmk. In a sense latexmk is the fallback to this maven plugin as much as
lualatex is the fallback to latexmk.

To make this work, this plugin must integrate latexmk as latexmk integrates
lualatex. This is guaranteed, if this plugin can write a config file .latexmkrc
which causes latexmk to behave like this plugin. This is exactly what injection of
.latexmkrc is intended to do according to Section 3.5.1. Note that this feature is
just offered, but the user may also use his/her own file .latexmkrc. This software
recognizes whether .latexmkrc is defined by the user and, if so, does not overwrite
or erase this file.

Based on injection of .latexmkrc, this plugin may even use latexmk as a means
to build bypassing its internal build rules. For motivation of this feature and for
details in implementation see Section 5.9.

There is a difference in the build processes (except if this plugin uses latexmk)
concerning mostly graphic files: latexmk detects dependencies via the -recorder
option of the latex generator and creates or recreated what is new or changed. This
is more elegant than the idea of this plugin which is creates a fixed set of graphic
files first and is from that point on based on detecting hard coded set of files and
tracing log files. In other words, latexmk has no graphic preprocessing as Chapter 4
describes for this build tool. This offers the advantage, that latexmk never creates
graphic files which are later not needed for inclusion. Nevertheless, to deal with
graphic files which are to be created in the course of the build, latexmk runs the
LATEX engine in nonstopmode mode. Still, the run of the engine is interrupted, a
single graphic file is created according to some rule and then the engine is rerun. For
a document with 10 graphic files to be created in the course of the build, latexmk
requires 10 runs of the LATEX engine if no bibliography or so is presentations. In
contrast, this plugin requires a single run in this case, so performance is significantly
better. The use of \IfFileExists is not really elegant but prevents latexmk from
frequent reruns and in some cases is a technique to make the build process with
latexmk work. One of these cases, related with using listings is discussed below
in this section.

More general, there are cases, where this latex builder succeeds but latexmk
does not. As this latex builder may invoke latexmk either in general or for selected
files, this latex builder is mightier than latexmk. If both approaches succeed, the
results shall be the same for this plugin and for latexmk.

It is possible to combine this plugin with latexmk to speed up latexmk:

56 CHAPTER 3. USAGE OF PLUGIN AND TASK

mvn clean validate latex:grp

cleans like latexmk -C and in validate invokes goal inj injecting .latexmkrc to
configure latexmk and maybe header.tex necessary to compile the latex files at
all. Finally, goal grp creates the graphic files which speeds up latexmk if this is
invoked next. Of course the above maven invocation is also a good initialization
for building with the basic tools without latexmk.

Finally, goal clr tied to phase clean erases all intermediate files and thus
makes the next build independent of the previous one.

For further reading on goal grp creating graphics files see Section 3.6.4, Sec-
tion 3.5 is on file injection and goal clr to clear created files is described in
Section 3.6.5.

3.6.2.2 How latexmk is integrated

Finally, we show how this plugin may support latexmk. To understand in which
sense, one must dive very deep. In short, injection of a header patches package
listings in a way that saves performance of latexmk. Let us elaborate.

This software and latexmk follow a different philosophy in finding dependencies:
Whereas this software creates image files in advance before invoking a LATEX engine,
latexmk first calls the LATEX engine in nonstopmode to avoid a stop because of a
missing file. Then the file is created using the appropriate rule (hopefully unique)
and the engine is run again, this time passing the inclusion of the first created files
failing at the next one. To find out that another rule is needed, latexmk parses the
LOG file of the latex compiler. As the packages write log messages in their own
style, this is the point where the solution is no longer generic and so it is no surprise,
that there is at least one kind of inclusion which does not work that way: inclusion
with \lstinputlisting provided by listings. In fact, the author has an email
from J. Hoffmann, author of listings telling that there are more packages with
the same problem. To be checked: fancyvrb and moreverb. Nevertheless, all other
ways of inclusion used by this manual like the one with \import seem to work fine.

The current workaround for the second problem is by patching listings as
described in Section 3.5.2.

The suggested workaround for the first problem is creating graphic files using
goal grp as described in Section 3.6.4 before invoking latexmk.

Still some generalization in latexmk could spare this modification.
Another point is, that currently for each file latexmk creates with a separate

rule, another run of the LATEX engine is required: The initial run is interrupted
with the first missing file. Then that file is created by an appropriate rule and
the LATEX engine is rerun failing with the next missing file. That way the process

3.6. DEVELOPMENT OF DOCUMENTS 57

goes on until the last file is created with a rule. Of course this procedure is quite
time-consuming, so an alternative is required.

3.6.3 Checks in the context of document development
The target chk just invoke the tool chktex and logs finding in a CLG file. It is
invoked as the final quality check for the documents created from latex sources.
But if this check fails, there is a transition to document development. As said in
Section 3.6.2 on running this plugin on a single file with a single target applies here
also. But here again, this plugin is not the first choice: Better is to invoke chktex
directly and to eliminate the warnings iteratively. Since the file .chktexrc injected
by this plugin as described in Section 3.5 configures chktex whether chktex is
invoked directly by the user or via the plugin in goal chk, the results are the same.
In the wording coined in Section 3.6.2, this plugin integrates chktex very much
the same way as it integrates latexmk namely by injection of a config file.

The config file .chktexrc in turn is adapted to the header header.tex which
is also injected. In general, .chktexrc excludes content of environments and of
arguments of commands defined in packages loaded by header.tex or defined
therein directly. A nice example of another kind of synergy is the command
\textttNoChk defined in header.tex. Functionally, it is just \texttt which sets
the argument in typewriter font, but in .chktexrc it is listed among the commands
the arguments of which shall not be checked by chktex.

After eliminating warnings until direct invocation of chktex displays no warn-
ings, one can be sure that also check with goal chk of this plugin does not yield
warnings.

3.6.4 Goal Graphics grp

In the context of document development, typically compilation is done by basic
tools like lualatex or by an orchestration tool like latexmk. Nevertheless, since
separation of builds is desirable, intermediate files like graphic files are not present.
Maybe they are removed by cleaning.

The
TBD: check whether this is really needed: is also described in section on

latexmk. Maybe we need a section on this plugin describing grp and clr uniformly.
Maybe also first write on chktex and its relation to this plugin.

Hint to relation with latexmk. needs mvn validate & mvn latex:grp.
For creating the graphic files in the TEX source directory, there is a goal

graphics, invoked by mvn latex:grp. This goal does not create any output in
the site directory. Instead, it populates the source directories with graphic files

58 CHAPTER 3. USAGE OF PLUGIN AND TASK

which can be directly included into the LATEX-file and so it allows to run the
LATEX-compiler on the LATEX main files from within a development environment.
Thus, the goal graphics is thus a vital feature for development of documents.

Note that in general mvn clean validate latex:grp creates all files necessary
to compile with a LATEX engine like lualatex and also to compile smoothly with
latexmk.

3.6.5 Goal Clear clr

When invoking this plugin as a final build, cleanUp is set to its default true.
Thus, all files not present at the beginning of the build process are removed. As a
consequence, there is no need for a separate goal clr. This comes into the game
only in the context of document development. Either cleanUp was set to false or
other more basic tools created intermediate files which must be deleted by clr.

Cleaning is vital because it makes the next build independent of the previous
one. Deletion is driven by a regular expression patternCreatedFromLatexMain
described in Table 6.1 on page 126. Completeness can be guaranteed only if the
set of loaded packages is limited. Of course, only created files shall be deleted. For
packages introduced in the injected header header.tex described in Section 3.5.2,
this shall be the case. The author’s criterion for a correct regular expression is,
that after deletion exactly the files under version control remain.

The goal clr corresponds with latexmk -C and is tied to phase clean.
Clearing comprises files created by the goal grp and by any other goals. Note

that AUX files are deleted if they belong to a LATEX main file or to an included file.
The most interesting files are those created by injection, i.e. by goal inj like

.latexmkrc: As pointed out in Section 3.5, each of the files in question is deleted
only if they were definitively written by this plugin. If this is proved to be false or
a proof is not possible, the configuration files are not deleted. As for goal inj, in
case of a doubt, a warning is displayed.

3.6.6 Installation and Configuration
TBD: rework: maybe better describe the goal inj. The goal inj is to create a set
of files, partially adapted to the current configuration.

By default, it is tied to lifecycle phase validate and comprises the set of
injections latexmkrc,chktexrc.

The first we treat is injection vscodeExt injecting a file instVScode4tex.sh
in the TEX source directory. Typically, this is not injected during a lifecycle,
but when installing or updating extensions for VS Code used during document
development. Thus, typically it is invoked in the form

3.6. DEVELOPMENT OF DOCUMENTS 59

mvn latex:inj -Dlatex.injections=vscodeExt

In the default configuration, this creates an executable file

src/site/tex/instVScode4tex.sh

using bash shell. The extensions are those described
Install script for installing extensions for VS Code helping in developing LATEX

documents.
In addition, configuration scripts for latexmk and chktex. Also describe how

to use.

3.6.7 Miscellaneous
During development, it is comfortable, to have the log-file in the same directory
as the LATEX main file. Also, if PDF- and TEX-files are synchronized, also the
PDF-file should be in the same directory. Likewise, files in graphic formats which
cannot be included into a LATEX-file without conversion, that converted file shall be
in the same directory as the original one. So, all files, manually created files and
files arising from automatic conversions shall be in the same folder, at least during
development. Also, typically, one wants to mix creation by this maven-plugin
or ant-task with at least partial creation through external tools. For example, if
writing LATEX-files with Emacs, it is much more convenient, to compile the LATEX
main file via pdflatex from within Emacs or to create a PDF-file from a FIG-file
through xfig’s export dialog, than using this maven-plugin or this ant-task. Also,
these tools work best, if all is in one folder.

On the other hand, conventionally, in a maven project, sources are held in
folder src, whereas created files occur in the folder target. Likewise for ant. The
compromise, this maven-plugin and this ant-task take, is, that at the end of a run,
at most the files present at the beginning of the run may be present in the source
directory. So, this software builds in the following steps:

• Store a list of all files present at the beginning of a run.

• Process all graphics files of the formats requiring preprocessing.

• Determine the LATEX main files.

• Run the LATEX engine, e.g. the one creating PDF-output or DOCX-output.
This may include running auxiliary programs like bibtex or pythontex and
also rerunning the LATEX engine several times.

• Copy the result files (if any) into the target folder.

60 CHAPTER 3. USAGE OF PLUGIN AND TASK

• Remove all files not present at the beginning of a run, by default.

To keep e.g. the resulting PDF, just create it via compilation through Emacs,
even if not all graphic files to be included are present or just by a touch-command.
Then in the next run of this plugin, this PDF will be re-created, that time complete
with the graphics output. That way, synchronization between LATEX- and PDF-files
is possible. Likewise, to keep the log-file or the aux-file, just touch it. This technique
is really valuable for debugging.

To keep all created files after a run of this maven-plugin, set the parameter
cleanUp in the pom to false as illustrated in Listing 3.5. For the ant-task likewise.

But how can one get rid of all these newly created files? That is what is the
goal latex:clr is for: mvn latex:clr removes all created graphic files and for
each LATEX main file, it removes all files with “similar” names including log files,
index files and that like. Typically, this suffices, to remove all files created. If not,
try to modify parameter $patternCreatedFromLatexMain in the pom accordingly.
If this does not help either, please inform the developer of this software. Of course,
if further software is used which creates additional files, like Emacs creates a folder
auto, these files cannot be removed by this maven-plugin or this ant-task. Note
that latex:clr also removes exported files as listed in Section 3.2 from the target
folder.

During development of a LATEX-main file, it is often more convenient to compile
from within an editor like Emacs. The problem is, that compilation fails if the
graphic files are missing. This is what the goal graphics accessible via

mvn latex:grp

is for: It creates all graphic files required to compile the LATEX-main files.
Still this does not create a bibliography, an index or a glossary. With AUCTEX,

an Emacs-package for editing LATEX, bibliography and index are well-supported.
To create a glossary, AUCTEX has to be modified a little.

That way also the log-files required are created: In case of this manual, the files
manualLMP.xxx are created where xxx is

• log for LATEX,

• blg for BibTeX,

• glg for makeglossaries and

• ilg for makeindex.

The last goal regularly used for development of documentation is check. It is
invoked via

3.7. GOALS IN THE MAVEN LIFECYCLE 61

mvn latex:chk

and runs chktex, described in [Thi22], on each LATEX main file after having created
graphic files as for goal graphics. As a result, a log-file with suffix .clg is created
but not copied to the target folder. If the log-file contains an entry, an according
message is logged. Note that, with default configuration, chktex requires the
LATEX-package booktabs described in [Fea16].

Besides the basic configuration packaged with chktex, there can be an additional
configuration file .chktexrc which partially overwrites variables set by the basic
configuration file, partially, for list-valued variables, adds entries. Section 2.2
describes how to access the .chktexrc with which this manual is checked and
details to the form of .chktexrc can be found in [Thi22], Section 6.1.5.

Another aspect of document development is integration with other tools.
Document development starts with the editor. Above the Emacs editor enhanced

with AUCTEX was mentioned. We recommend VS Code in conjunction with several
extensions. If VS Code itself is already installed the script instVScode4tex.sh
installs and updates all extensions the author used to develop this manual. The
core extension is latex workshop, the others are mainly used for editing graphic
files. For details see Section 2.2.

3.7 Goals in the maven lifecycle
The goal latex:cfg exporting in the formats configured is tied to the lifecycle
phase site so is invoked when commanding
mvn site

or subsequent phase.
Also, the goal latex:clr cleaning created files both from source directory and

from target directory is tied to phase clean so is invoked when commanding
mvn clean

Finally, the goal latex:vrs displaying versions of converters and the goal
latex:inj injecting a set of files depending on the configuration are tied to the
phase validate. Thus, both goals are invoked when commanding
mvn validate

which is invoked not only in installation, but also by the site plugin. This ensures,
that the converters are checked for correct version before being used. Note that
by default, mvn latex:vrs displays complete version info, whereas mvn validate
only displays warnings if appropriate. This is, because in the first case the plugin
runs with the default versionsWarnOnly=true whereas in the second case, is

https://www.simuline.eu/LatexMavenPlugin/fromMain/instVScode4tex

62 CHAPTER 3. USAGE OF PLUGIN AND TASK

configured with versionsWarnOnly=false as in Listing 2.4. Also Listing 2.4 shows
a recommended configuration for the goal latex:inj which determines injected
the files.

3.8 The ant-tasks
Section 3.2 treats goal cfg to create output from one source in various formats and
also check which is without output. The target formats and also the checks are
specified in the parameter targets.

There is an according ant task cfg doing the same also based on parameter
targets. Whereas the maven plugin provides separate goals for each target, the
ant-task has no such convenience feature. Section 3.2 briefly mentions goal clr
used for cleanup. There is an according ant-task relying on according parameters.
Note that the ant task does not support very much of document development, but
it is likely, that the user performs document development and runs other programs
than the ant task on the sources. In this case, the clr task is vital.

If this ant-task is used in an ant project with folder structure conforming with
a maven project and if the LATEX sources do not require a special configuration, the
above configuration is sufficient. Otherwise, parameters have to be given explicitly
overwriting the default values.

3.8. THE ANT-TASKS 63

<!−− crea t e html and pdf and o ther formats from l a t e x −−>
<plug in>

<groupId>eu.simuline.m2latex</ groupId>
<a r t i f a c t I d>latex-maven-plugin</ a r t i f a c t I d>
<version>2.1</version>

<c o n f i g u r a t i o n>
<s e t t i n g s>

<t a r g e t s>pdf</ t a r g e t s>
<cleanUp>f a l s e</cleanUp>

</ s e t t i n g s>
</ c o n f i g u r a t i o n>

</ plug in>
Listing 3.5: Configuration without cleanup

64 CHAPTER 3. USAGE OF PLUGIN AND TASK

Chapter 4

Graphics and Preprocessing

While LATEX is really strong in text processing and also in formula processing, in
itself it is weak in its graphical abilities. Graphics in some formats can be included
directly in a LATEX document, but all need loading of according packages. For an
overview of the graphic formats and the packages needed for their support see
Section 4.1. The set of available graphic formats is extended by preprocessing,
i.e. by processing prior to the LATEX engine. Preprocessing mainly consists in
converting graphic formats not supported by LATEX packages into graphic formats
supported by some LATEX packages. Section 4.2 provide vital information on the
target formats.

This software uses preprocessing for graphics only. Note that preprocessing is a
design decision on the build tool and e.g. latexmk has no preprocessing at all. For
details see Section 3.6.2.1.

Table 4.1 gives an overview over the formats supported via preprocessing. The
first column lists the formats, the second one at least one editor for the format, and
the last row contains the parameter to configure the preprocessing tool and give
the default tool as an example. Sections 4.3, 4.4, 4.5, 4.6 and 4.7 treat each format
separately. For all but PNG and JPG considered in Section 4.7, preprocessing is
just conversion of the format into another format directly supported as described
in Section 4.1. Historically the latter two required preprocessing to determine the
bounding box was needed. We still support this to support historical techniques
and to be sure to be able to reconstruct historical documents. Support for further
formats can be easily added. If there is some need, please write an email to the
author.

Of course, to support a format, the preprocessing tools must be installed. It
is advisable to have also an editor installed. Sometimes the editor is used also as
converter as for inkscape. For human-readable formats like fig, it often makes
sense, to use both the graphical editor and the textual one. Note that vscode
supports the given formats more properly, if the extensions described in Section 3.5.5

65

66 CHAPTER 4. GRAPHICS AND PREPROCESSING

are installed also.

Graphic format editor preprocessing tool
fig xfig, vscode fig2devCommand, e.g. fig2dev
gnuplot (gp) vscode gnuplotCommand, e.g. gnuplot
MetaPost (mp) vscode metapostCommand, e.g. mpost
svg inkscape, vscode svg2devCommand, e.g. inkscape
jpg, png gimp ebbCommand, e.g. ebb

Table 4.1: Overview over the graphic formats supported
via preprocessing

4.1 Graphic formats and packages supporting
them

Find below a list of packages either allowing to include directly certain graphic
formats, or helping with graphics indirectly. Although strictly speaking these
techniques do not need special treatment of a build tool, this software supports
these techniques by providing header files by injection loading the needed packages.

We also describe in which sense these packages support graphical preprocessing.

graphicx is the basic graphics package which provides the command \includegraphics
which allows including graphics natively in the formats PDF, EPS, JPG and
PNG at least. For details see [Car16]. Note that PDF and EPS are target
formats for graphical preprocessing, where PDF is embedded into PDF and
EPS is embedded into DVI/XDV. As described in Section 4.5, also MPS, the
target format for metapost is included using graphicx.

transparent allows specifying transparency in graphics. Even if you do not use the
feature, some source formats do (in fact only SVG) does and so the according
converters create according information and so the LATEX engine must get
along with it. Note that this applies only for output format PDF and in
particular not for xelatex. For details see [Obe16b].

bmpsize is needed for bitmap formats like JPG and PNG only. Used to extract
resolution and bounding box. FIXME: needed more information. For details
see [Obe16a].

tikz The TikZ code described in [Tan23] is just in LATEX format. Thus, it can be
included directly and does not require any preprocessing. Still what is needed
is a good graphical editor like tikzedt with online manual [TW12]. In later

4.1. GRAPHIC FORMATS AND PACKAGES SUPPORTING THEM 67

versions of this software, 3.x or so, it is planned that TikZ is used as new
target format for graphical preprocessing, replacing the current combination
of LATEX for texts and PDF/EPS for proper graphic.

import is strictly speaking no graphics package. According to its documenta-
tion [Ars09], it allows an imported file to find its own inputs (using “\input”,
“\includegraphics” etc.) in that directory. This is vital for the graphic
formats for which a TEX file is imported which itself imports a PDF/EPS
file located in the same folder but not in the folder of the importing file. It
is advisable to combine the import package with other graphic packages to
include graphics in separate graphic files.

xcolor allows using colors in graphics. Even if the author does not use colors in
graphics, several formats, like FIG, GP (GnuPlot file format) and SVG offer
it and so the according converters transforming them into the native formats
create color information which can be rendered only via xcolor. In this sense
its role is comparable to that of transparent. On the other hand, the use of
xcolor is not specific to graphics. For details see [Ker16].

pythontex is strictly speaking no graphics package either but more general a way to
include and run code within a LATEX document as described in [Poo21]. Note
that not only Python but also other languages can be used. Most of them
offer graphic capabilities and so graphics can be included also via pythontex.
Nevertheless, we do not treat this technique in this chapter, but separately in
Section 5.5. This is because graphics is a side aspect of pythontex and also
because strictly speaking there is no preprocessing. First a latex processor
is run, and the package extracts the code into a separate file which is then
further processed by an external tool. This is more like running \bibtex to
extract a bibliography.
If using the package pythontex a special processing interacting with the
LATEX engine is required also, but it is not preprocessing.

Section 3.5 is on injection of files and in particular header files:

header.tex treated in Section 3.5.2, is a general header file intended to be included
into all LATEX files. Since the packages import and xcolor are generally
useful, not only in the context of graphics, they are among those loaded in
header.tex.

headerGrp.tex described in Section 3.5.3 in contrast, is a header file loading
graphic specific packages related with graphicx, loading also transparent
and bmpsize.

68 CHAPTER 4. GRAPHICS AND PREPROCESSING

The header files adapt the loading of the packages to the context, in particular
to the target format. Note that headerGrp.tex must follow header.tex.

The package tikz, although a pure graphic package is very specific and not
related to graphicx. Thus, it must be loaded separately. The same holds for
pythontex.

Besides the converter external to LATEX, also several LATEX-packages are required
to use graphics.

This section describes the conversions of graphical source files into target files
in detail.

But PDF also occurs as an intermediate format for pictures. For historical
reasons, still EPS is used. Section 4.3 shows how fig2dev converts fig-files into
LATEX-files containing text and including graphics in as PDF files. Likewise, Sec-
tion 4.4 describes how gnuplot converts gnuplot-files into PDF files. An interesting
alternative to gnuplot for computing pictures is MetaPost described in Section 4.5.
A more elaborate alternative to fig-pictures are SVG pictures described in Section 4.6
Also several formats collected in Section 4.7 may be included as is.

4.2 Target formats for preprocessing
At a first sight, PDF seems the ideal target format for any kind of preprocessing:
It is really mighty enough to display pictures in any source format without loss
of information and even without change in appearance, and for modern LATEX
implementations directly creating PDF files, the LATEX-package graphicx allows
including graphics as PDF files in LATEX-files.

At a second sight, the source formats under consideration offer pictures mixing
vector graphics and texts and in particular formulae set in LATEX style. Preprocessing
is based on on-the-shelf converters and if targeting PDF, the texts originally in
LATEX style change their appearance. To keep up LATEX style, they provide mixed
export consisting of a PDF file containing proper graphics without texts and a TEX
file containing the texts in proper location and an \includegraphics command
including the created PDF file. This mixed conversion is used for all kind of
preprocessing.

Note that we could have used the ending TEX for the texts, but we opted for a
specific ending PTX (pdf/postscript TEX format; home-brewed) signifying that the
file is created and thus does not slow down search of LATEX main files.

But still there is another problem with PDF as target format: Traditionally
LATEX produced output in the DVI/XDV-format which is still used to create HTML-
output. For LATEX engines pdflatex and lualatex, DVI output is specified with
option --output-format=dvi. It turns out, that with this setting, PDF files cannot
be incorporated with \includegraphics command. Instead, one must use EPS

4.2. TARGET FORMATS FOR PREPROCESSING 69

files. Fortunately, the graphic converters used also support combined TEX/PTX
and EPS formats. We ensured that \includegraphics in the PTX file specifies
the file without ending so that the PTX file is the same, whether it encloses a
PDF file or an EPS file, and we provide both, a PDF file and an EPS file1. That
way, both, pdflatex and lualatex choose the EPS file or the PDF file depending
on whether the output format is --output-format=dvi or --output-format=pdf
which is the default. Note that xelatex, which always creates an intermediate
XDV file (which is a special kind of DVI file), acts differently: If present, it prefers
including the PDF file, if absent, but there is an EPS file instead, it uses this
without making any difference.

Although this is beyond necessity, let me state that pdflatex and lualatex,
while not accepting inclusion of PDF files in DVI mode, EPS files are accepted
in PDF mode for more modern versions of the LATEX engines, but this leads to
creation of intermediate files xxx-eps-converted-to.pdf, which are not cleaned
up in target clr.

Whereas PDF and EPS files both are offered, only one of them is included for a
specific configuration. This is in contrast to other formats described in Section 4.7.

Although PTX is just a TEX format, it is special in that it presupposes that some
packages are loaded before being included. The packages which are not specific for
graphics like xcolor are loaded in header.tex described in Section 3.5.2, whereas
the ones specific for graphics, above all graphicx, are loaded in headerGrp.tex as
described in Section 3.5.3. The packages actually to be loaded and their respective
options depend on the configuration.

Note that PDF and EPS file may be created by preprocessing but also as
proper sources not created at all, even in a single document. Goal clr deletes the
according files xxx.pdf or xxx.eps only, if an according source like xxx.fig exists.
Else it is treated as proper source and is not deleted.

In the future, the combination of PDF/EPS and PTX files may be replaced, at
least partially, or supplemented by TikZ files. It turned out, that the converters
under consideration support more and more conversion into the TikZ format which
can represent both, proper vector graphic and also LATEX texts like formulae. Using
TikZ as intermediate format has the advantage, that the working space is polluted
less with generated files, preprocessing is speeded up because fewer files are created
and in some cases, less processing steps are needed. Another advantage is, that
the internal dependency recording of LATEX engines made available through the
FLS (FiLeS dependencies: list of files the according tex file depends on; output
format of LATEX engines if used with option -recorder) file is accessible. As in the
current technique using PTX files instead of TEX files, we could put the TikZ into

1Of course, here a more sophisticated technique is conceivable, recognizing the required format
and generating the specific one if missing.

70 CHAPTER 4. GRAPHICS AND PREPROCESSING

TEX files, but we opt against it for the same reasons.
Note that PS is not supported because it misses the bounding box. If adding

it, one arrives at the EPS format.

4.3 Conversion of fig-files
A simple but still useful tool to draw figures is xfig which stores graphics in a
native format described in [Rei16] with file extension .fig. The file extension .fig
is also used by MATLAB to store plots, but this is something different. Graphics
in xfig format cannot be directly included in latex files but must be exported into
a LATEX-readable format.

To export a file xxx.fig residing in directory yyy into several external formats,
xfig uses fig2dev. A look in [Rei16], Section 3.4 shows that texts with set
“special”-flag are interpreted as latex-code. For these texts the appropriate export
language would be latex. On the other hand, latex is weak in graphics and pdf
would be the ideal export format for all kinds of objects, except for texts with set
“special”-flag. In pdf format, texts are interpreted literally, independent of the
“special”-flag. Thus, fig2dev offers a mixed solution: export xxx.fig in format
pdftex which yields a pdf-file xxx.pdf containing all but text with set “special”-
flag and complementary pdftex_t which yields a tex-file xxx.ptx including the
pdf-file and the texts with set “special”-flag. The exported files are in the same
directory yyy as the original file xxx.fig.

For example, the fig-file F4_01fig2dev.fig defining Figure 4.1, is transformed
into a file F4_01fig2dev.ptx in format pdftex_t which starts as given by List-
ing 4.1.

The file xxx.ptx is “imported” into the tex-file of this manual by the command

\ import {yyy}{xxx . ptx}

and includes xxx.pdf automatically the file xxx.pdf via \includegraphics{xxx}
(line 2). Note the following remarkable details:

• Observe that we can drop the suffix of the included file xxx.pdf which is
expressed as “xxx” because LATEX chooses the right suffix: If instead of
xxx.pdf there is a file xxx.eps, the latter is chosen if no suffix is specified.
As we will see below, omitting the suffix is crucial to make xxx.ptx work
for both LATEX-output formats: the pdf-format can include pdf-files, whereas
the dvi-format which is required to create html- and odt-files can include
eps-files.

• If xxx.pdf is included in xxx.ptx with the full path name, we may use
\input{xxx.ptx} instead of \import{yyy}{xxx.ptx}.

4.3. CONVERSION OF FIG-FILES 71

\begin{picture}(0,0)%
\includegraphics{F4_01fig2dev}%
\end{picture}%
%
% Conversion of xxx . f ig into xxx . ptx , xxx . pdf and xxx . eps
%
\setlength{\unitlength}{2072sp}%
\begin{picture}(8492,4797)(1114,−4621)
\put(1351,−2311){\makebox(0,0) [lb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{xxx. fig

}}%
}}}
\put(6976,−286){\makebox(0,0) [lb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{xxx.pdf

}}%
}}}
\put(6976,−2311){\makebox(0,0) [lb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{xxx.ptx

}}%
}}}
\put(6976,−4336){\makebox(0,0) [lb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{xxx. eps

}}%
}}}
\put(4726,−1636){\makebox(0,0) [b]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{fig2dev

−L pdftex_t}}%
}}}
\put(4726,−2311){\makebox(0,0) [b]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{fig2dev

−L pstex_t}}%
}}}
\put(3826,−61){\makebox(0,0) [rb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{fig2dev −

L pdftex}}%
}}}
\put(3826,−4561){\makebox(0,0) [rb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{fig2dev

−L pstex}}%
}}}
\put(7426,−1186){\makebox(0,0) [lb]{\smash{\fontsize{10}{12}\usefont{T1}{ptm}{m}{n}{\color [rgb]{0,0,0}\texttt{\

textbackslash includegraphics\{xxx\}}}%

Listing 4.1: The ptx-file for a fig-file

If in contrast, xxx.pdf is included in xxx.ptx with the short name only,
xxx.pdf is assumed to be in the same directory as the file inputting xxx.ptx.
So in general, i.e. if this is not yyy, we need import \import{yyy}{xxx.ptx}.
If the directories coincide, in the import the string yyy may be empty. If the
string yyy is not empty, it must end with the path delimiter, i.e. / for Unix
like systems and \ for win-like systems.

As indicated in Section 4.1, the commands in xxx.ptx require the packages
graphicx and xcolor. Also, the \import command requires the import package.

To export xxx.fig into xxx.ptx and xxx.pdf this software invokes two com-
mands:
fig2dev -L pdftex <fig2devGenOptions> <fig2devPdfEpsOptions> xxx.fig xxx.pdf
fig2dev -L pdftex_t <fig2devGenOptions> <fig2devPtxOptions> -p xxx xxx.fig xxx.ptx

Both commands specify the input file xxx.fig, both use the options given by the
parameter fig2devGenOptions while each invocation allows specifying also specific
options, fig2devPdfEpsOptions and fig2devPtxOptions, respectively, and both
use the option -L to specify the output format (“language”).

The parameters specific for pdftex are called fig2devPdfEpsOptions because
the options available are the same as for output format pstex creating eps-files.
An example for a common option would be -b width which shall specify the same
boundary for both formats; otherwise they do not fit.

72 CHAPTER 4. GRAPHICS AND PREPROCESSING

For the output format pdftex_t, the option -p xxx says, that the string xxx
must be included in xxx.ptx as \includegraphics{xxx}. Note that the option
-p shall not be specified in fig2devPtxOptions, because it is automatically added.

Equivalent to mixed export with formats pdftex and pdftex_t which is appro-
priate for LATEX-output format pdf, is the mixed export with the according formats
pstex and pstex_t appropriate for LATEX-output format dvi. The difference is that
pstex creates an eps-file instead of a pdf-file with the same content and pstex_t
creates a tex-file which looks like that created by pdftex_t except including the
eps-file instead of the pdf-file. If the suffix is not given, pstex_t and pdftex_t
create identical files. Thus exporting xxx.fig via
fig2dev -L pstex <fig2devGenOptions> <fig2devPdfEpsOptions> xxx.fig xxx.eps
fig2dev -L pdftex <fig2devGenOptions> <fig2devPdfEpsOptions> xxx.fig xxx.pdf
fig2dev -L pdftex_t <fig2devGenOptions> <fig2devPtxOptions> -p xxx xxx.fig xxx.ptx

and “inputting” xxx.ptx works for both LATEX output formats.
Table 4.2 relates the language specified with the -L option with the suffix of

the output file chosen canonically, the suffix we choose and the actual file format.
In contrast to fig2dev, we choose the actual file format, except if this is TEX. We
opted for the quite unusual suffix .ptx instead of .tex to avoid that TEX-files
may be both, source files and created files, but this is not compulsory, since the
same holds and is accepted for pdf-files.

Output format (language) xfig suffix our suffix format
pstex pstex eps eps
pstex_t pstex_t ptx tex
pdftex pdf pdf pdf
pdftex_t pdf_t pdf pdf

Table 4.2: Language, suffixes and file format

Maybe xfig is intended to export from within the export dialog and not directly
via a script like fig2dev. This may be the reason why the magnification must be
set in the export dialog, but it is stored in the fig-file nevertheless.

Figure 4.1 shows the transformation of figures with fig2dev and the inclusion
of the eps-file and of the pdf-file in the ptx-file. Note that the fig2dev-command is
configurable via the parameter fig2devCommand, but there will be hardly any com-
mand with the same command line interface performing exactly the transformations
given in Figure 4.1, except fig2dev itself.

At the same time, Figure 4.1 is an example for a LATEX-file xxx.ptx created
from a fig-file and embedded in this LATEX-file with the \input-command. More
than that, Figure 4.1 describes the way it has been created. Note that all text labels
are specified with set “special”-flag, and are thus included as LATEX-text, except the
text postscript which is typeset with a postscript font to make the difference visible.

4.4. CONVERSION OF GNUPLOT-FILES 73

postscript

xxx.fig

xxx.pdf

xxx.ptx

xxx.eps

fig2dev -L pdftex_t

fig2dev -L pstex_t

fig2dev -L pdftex

fig2dev -L pstex

\includegraphics{xxx}

\includegraphics{xxx}

Figure 4.1: Conversion of a fig-file into pdf-, eps- and ptx-files with inclusions

4.4 Conversion of gnuplot-files
The term “gnuplot” refers to a file format and to a program gnuplot which can
read this format, both described in [WK23].

Note that there seems no official file extension to identify gnuplot files. From
the most common extensions .plt, .gpi and .gp we have chosen the one with the
least collision and supported by Emacs, vscode and by my file browser: .gp.

The gnuplot format is a textual command language you can even program
with and may thus be created with any editor but for sake of reproducibility it is
recommended to use only files created by gnuplot. To ensure that a handwritten
gnuplot file xxx.gp, e.g. with a single line like

plot [-10:10] sin(x), atan(x), cos(atan(x))

really works with the current gnuplot and to see how it is interpreted, it is
recommended to convert it via
gnuplot −p e r s i s t −e " load ' xxx . gp ' ; save ' xxx . gp ' "
If you have a look inside the resulting file F4_03someGnuplot.gp, you can see, that
in a comment line the current version of gnuplot is documented and also all the
settings implicitly used. The original line is the last but one. Pasting the into VS
Code, one can see the highlighting, of course provided the extensions described in
Section 3.5.5 are installed.

Also, if a gnuplot file is created with an old version of gnuplot, it is recommended
to update version with the same command. Note that gnuplot does not offer full
backward compatibility.

This software supports including figures stored in .gp-files created by gnuplot.
To export a file xxx.gp into several external formats, it uses gnuplot itself. Ac-
cording to the manual [WK23], Part IV, gnuplot supports output formats through

https://www.simuline.eu/LatexMavenPlugin/fromTex/F4_03someGnuplot.gp

74 CHAPTER 4. GRAPHICS AND PREPROCESSING

so-called terminals. Among those are several ones intended for inclusion into LATEX-
files, like Cairolatex, Epscairo, Epslatex, Latex, Lua (tikz), Postscript,
Ps(la)tex, Pstricks, Texdraw and Tikz which is in fact equivalent with Lua
(tikz). Comparison with the manual [WK16] for older versions of gnuplot shows
that support of Eepic, Mp and Tpic ended. Note that also export into the fig-
format via the terminal Fig is supported which in turn may be included in latex
as described in Section 4.3. Also, gnuplot pictures may be exported in MetaPost
format which in turn may be included in latex as described in Section 4.5.

This software supports the export of a file xxx.gp only via the terminal
Cairolatex which offers export to mixed PDF and LATEX: graphics in PDF
and text in LATEX which yields the fonts typical for LATEX. This is as described for
fig-files in Section 4.3, except that text is generally converted in LATEX-format, and
not selectively those text marked with special flag.

Accordingly, the export yields two files xxx.ptx and xxx.pdf, both in the
directory yyy in which xxx.gp resides. The file xxx.ptx must be imported via

\ import {yyy}{xxx . ptx}

It contains the texts and includes xxx.pdf via \includegraphics{xxx} without
specifying a suffix.

Unlike for fig-files, xxx.ptx and xxx.pdf are created with a single command:

gnuplot -e "set terminal cairolatex pdf <gnuplotOptions>;
set output 'xxx.ptx';
load 'xxx.gp'"

Accordingly, xxx.ptx and xxx.eps are created with a single command:

gnuplot -e "set terminal cairolatex eps <gnuplotOptions>;
set output 'xxx.ptx';
load 'xxx.gp'"

Note that this writes another but identical file xxx.ptx as no file endings are written
and so xxx.ptx can include both, pdf and eps. When creating both performance
is not optimal, but gnuplot offers no way to avoid this. If being strict, xxx.ptx is
perfectly correct only for output eps, if comments and error messages are taken
into account but as long as no error occurs, the result is perfectly ok also for pdf.

As for inclusion of fig-files, packages graphicx and color are needed.
Figure 4.2 shows the transformation of the plots and the inclusion of graphic

files. In addition, Figure 4.3 shows an example of a LATEX-file created from a
gnuplot file and embedded in this LATEX-file.

4.5. INCLUSION OF METAPOST FILES 75

xxx.gp

xxx.pdf

xxx.ptx

xxx.eps

gnuplot pdf

gnuplot eps

\includegraphics{xxx}

\includegraphics{xxx}

Figure 4.2: Conversion of a gnuplot-file into pdf-, eps- and ptx-files with inclusions

4.5 Inclusion of MetaPost files
A vector graphic format, very native to TeX is MetaPost, a derivative of Metafont
originally used to describe shape of fonts. Although seemingly supported by TEX
only, MetaPost is interesting in its own right, as it is a graphical programming
language, Turing complete, much like postscript, and allows also declarative pro-
gramming. The manual describing the language is [Hob24], seemingly complete,
but it is not. Thus, one can be thankful for [HH13] which offers some introduction
and for the really helpful tutorial [Hec05].

Files containing MetaPost have the ending .mp. Note that there are other
graphic formats like monochrome pictures in TIFF-format which are identified with
the same extension but the MetaPost format has nothing to do with this.

Since MetaPost is a programming language, MetaPost files are created with
an editor. Since MetaPost is very versatile, it is impossible to give an impression
by a single example. We decided to choose an example using a MetaPost library,
MetaUML, described in [Ghe19] for some reasons apparent later. The example file
is given in Listing 4.2 and also on the web as F4_05someMetapost.mp. It is the
source file of Figure 4.5. Pasting the into VS Code, one can see the highlighting, of
course provided the extensions described in Section 3.5.5 are installed.

Listing 4.2 illustrates some structure of MetaPost. As in TEX, comments start
with % and end with the line or with the file. The proper figures are enclosed
between beginfig(n) and endfig, where n is the number of the figure, the so
called charcode2, and the file ends with end. This software relies on specifying a
single figure per file; the charcode is irrelevant.

Code outside figures is possible, but does not belong to a figure and is thus
not displayed. In our example, besides end commands outside the figure are just

2This is a relict from Metafont, where each figure showed a character

https://www.simuline.eu/LatexMavenPlugin/fromTex/F4_05someMetapost.mp

76 CHAPTER 4. GRAPHICS AND PREPROCESSING

%pro logues := 0;% d e f a u l t
%%pro logues := 3;
%outpu t t emp la t e :="%{jobname}.%{ charcode }";% d e f a u l t

4 %outpu t t emp la t e :="%{jobname}%{charcode } . mps";% fo r l a t e x
%output format :=" eps ";% d e f a u l t
input metauml ;
beginfig (1) ;

% s t a t e s
9 Begin . beg inAl l ;

%End . endAl l ;
% Sta t e Standby
State . Stopped ("STOPPED") () ;
Stopped .w = beg inAl l . e + (20 , 0) ;

14 State . Playing ("PLAYING") () ;
%Playing .w = Stopped . e + (60 , 0) ;
State . Paused ("PAUSED") () ;
Stopped . n = 0 . 5 [Paused . n , Playing . n] + (0 , 7 0) ;
Playing .w = Paused . e + (120 , 0) ;

19 %endAl l .w = Standby . e + (20 ,0) ;

Note .A(" This i s my aleph " , btex $\ aleph $ etex) ;
A. e = beg inAl l .w + (−20 , 0) ;

24 drawObjects (beg inAl l , Stopped , Playing , Paused , A) ;

% feedback ; l i n k s a f t e r draw : bad

% l i n k s between s t a t e s
29 l i n k (t r a n s i t i o n) (beg inAl l . e −− Stopped .w) ;

l i n k (t r a n s i t i o n) (Stopped . e −− Playing . n) ;
item . play (iAssoc) (" [play ()] ")

(play . sw = 0 . 5 [Stopped . e , Playing . n]) ;
l i n k (t r a n s i t i o n) (Playing .nw −− Stopped . se) ;

34 item . stopPlay ing (iAssoc) (" [stop ()] ")
(s topPlay ing . ne = 0 . 5 [Playing . nw, Stopped . se]) ;

l i n k (t r a n s i t i o n) (Playing .w + (0 , +10) −− Paused . e + (0 , +10)) ;
item . pause (iAssoc) (" [pause ()] ")

(pause . s = 0 . 5 [Playing .w, Paused . e] + (0 , 1 0)) ;
39 l i n k (t r a n s i t i o n) (Paused . e + (0 , −10) −− Playing .w + (0 , −10));

item . playPaused (iAssoc) (" [play ()] ")
(playPaused . n = 0 . 5 [Paused . e , Playing .w] + (0 , −10));

l i n k (t r a n s i t i o n) (Paused . ne −− Stopped . sw) ;
item . stopPaused (iAssoc) (" [stop ()] ")

44 (stopPaused .nw = 0 . 5 [Paused . ne , Stopped . sw]) ;
endfig ;
end

Listing 4.2: An example file in MetaPost

4.5. INCLUSION OF METAPOST FILES 77

−1.5

−1

−0.5

0

0.5

1

1.5

−10 −5 0 5 10

sin(x)
atan(x)

cos(atan(x))

Figure 4.3: Converted sample gnuplot-file into ptx and pdf files

input xxx, where xxx names a so-called library defined by the file xxx.mp and a
sequence of settings of internal variables of the MetaPost compiler controlling how
the following figure is compiled. Most of them even in comments.

The compiler for MetaPost is given by the parameter metapostCommand which
defaults to mpost, occasionally just mp.

Each internal variable which can be set in the MP file can also be set when invok-
ing mpost using the option -s 〈variable〉=〈value〉 as described in [Hob24], Sec-
tion B.2.1. There it is stated that the option is read just before the file is read, which
implies that the setting in the file overrides the command line setting. Caution: in
the manual, the variable is referred to as “key”.

The most basic setting is outputformat:="eps" which is the only setting
appropriate for latex. So don’t change3. Note the strange default setting for
the names of the output files, outputtemplate, which reflects the charcode of
the individual figures as file ending. For inclusion in latex, the file ending mps is
required and so frequently outputtemplate is set to reflect the ending. It seems
more appropriate to make the setting in the command line which yields the following
invocation

mpost -s 'outputtemplate="%{jobname}%{charcode}.mps"' xxx.mp

3Note that metapostCommand may also besides EPS output SVG and PNG, just by setting
outputformat:="svg" or that like. Caution: case-sensitive, assuming silently eps if the format
is not recognized. Whereas SVG is a vector format as MetaPost ifself, PNG is a raster format

78 CHAPTER 4. GRAPHICS AND PREPROCESSING

As we agreed that a MetaPost file shall contain a single figure only, we also
ignore the charcode which unifies MetaPost with other formats supported. This
yields

mpost -s 'outputtemplate="%{jobname}.mps"' xxx.mp

The MetaPost file shall not overwrite the command line settings.
The setting of prologues controls where fonts come from and becomes relevant

when using TEX for typesetting. Listing 4.2, line 21 includes a label via a note im-
plicitly, and for the material between btex and etex uses TEX. The manual [Hob24],
Section 8.1 is on typesetting labels and specifies the meaning of prologues. If we
stick to including in LATEX and creating PDF out of that only, the default setting
0 is appropriate always but since this software uses DVI as intermediate format,
e.g. to create HTML, or because for debugging one wants to view the MPS files
standalone in a viewer things are not so easy. For details see [Hob24], Section 14.2.
Setting prologues:=1 is deprecated. The only save way to get the correct display
is to include fonts in the MPS file, setting prologues:=3, but this makes the MPS
file quite big. So a good compromise is to set prologues:=2 as a command line
option resulting in

mpost -s prologues=2 -s 'outputtemplate="%{jobname}.mps"' xxx.mp

and overwriting by need as in Listing 4.2, line 2.
As mentioned above, input xxx includes a library making the program depen-

dent on a file xxx.mp. As for latex processors, also mpost records dependencies
recursively in an FLS file if invoked with option -recorder. Also like latex
processors, an error shall not cause break or interaction so adding the option
-interaction=nonstopmode. Thus, we arrive finally at the default invocation

mpost -interaction=nonstopmode -recorder \
-s prologues=2 -s 'outputtemplate="%{jobname}.mps"' xxx.mp

Figure 4.4 illustrates how mpost converts an MP-file xxx.mp with the given
settings into various result files:

• an MPS-file or with setting

outputtemplate="\%{jobname}\%{charcode}.mps"

more MPS-files xxx1.mps…xxxn.mps,

• a log-file xxx.log and a fls-file xxx.fls much like LATEX does

• and an MPX (metapost TEX output: texts)-file xxx.mpx containing the
LATEX text of the figure; this is not created if there is no such text.

4.5. INCLUSION OF METAPOST FILES 79

xxxn.mps xxx1.mps

xxx.log

xxx.mp

mpost

xxx.fls

xxx.mpx

if LATEX text is present

alternatively

Figure 4.4: Conversion of a MetaPost-file into an mps-file

Figure 4.5 gives an example of a MetaPost file included in this LATEX-file as
ab mps-file created from the MetaPost file and embedded in this LATEX-file with
the \includegraphics-command. Normally, \includegraphics is invoked with
the filename without extension, but for mps-files, the extension is needed. As for
inclusion of fig-files, the package graphicx is needed.

STOPPED

PLAYINGPAUSED

This is my aleph
ℵ

[play()]

[stop()]

[pause()]

[play()]

[stop()]

Figure 4.5: Converted sample MetaPost-file included as mps-file

One of the descendants of MetaPost is TikZ (see introductory text [Cré11]) and
one of the deficiencies resolved is that it allows passing information from the main
document to the proper figure.

With lualatex this can be reached for MetaPost also using package luamplib.
The package itself provides an environment mplibcode. Essentially, lualatex
interprets all code enclosed in the mplibcode environment as MetaPost. As
described in Section 3.5.2, this software can inject a header which loads the header
and enhances it providing the additional command \inputmpcode which allows
also load MetaPost from a file. The latter is preferred to direct inclusion with the
mplibcode environment, e.g. for sake of proper code highlighting. Note that the
package declaration is enclosed in an if construct, ensuring that the package is
loaded only if lualatex or that like is run.

80 CHAPTER 4. GRAPHICS AND PREPROCESSING

That this allows better integration within the enclosing latex document is
illustrated by redefining the letter ℵ as α which is really related.

{% make r e d e f i n e l o c a l
\renewcommand{\aleph}{\alpha}
\ inputmpcode{F4_05someMetapost}
}% to recove r from r e d e f i n e {manualC4 g r a p h i c s . t e x }
Figure 4.6 Documents, that the redefinition really influences rendering in the

MetaPost file.

STOPPED

PLAYINGPAUSED

This is my aleph
α

[play()]

[stop()]

[pause()]

[play()]

[stop()]

Figure 4.6: Sample MetaPost-file included via luamplib for lua(hb)tex

4.6 Inclusion of SVG-files
Comparable with the xfig-format described in Section 4.3 but much more elaborate
and widely used is the SVG-format. There is a huge up-to-date official SVG 1.1
specification, [Da11] and a specification [Aa08] for SVG Tiny 1.2, which is itself
quite short and more readable and gives also a good overview on “SVG Big”. For
a tutorial, see [DHH02]. As stated in [Aa08], Section 1.1, SVG-files may contain
vector graphics, raster images and text. It may also contain video and audio
elements and may be interactive and dynamic, which goes beyond what can be
included in LATEX-files.

Figure 4.8 shows a picture in SVG-format. As PDF-files are included directly via
the \includegraphics-command, using the LATEX-packages xcolor and graphicx,
virtually, xxx.svg can be included directly via
%\ i n c l u d e s v g [wid th =0.5\ t e x t w i d t h] { xxx}%
using the LATEX-packages svg described in [Ilt12]. Note that the suffix of the file
name shall be omitted.

A closer look shows, that graphic preprocessing is done behind the scenes in
the course of a LATEX-run creating files xxx.pdf and xxx.pdf_tex. As described
for fig-files in Section 4.3 and for gnuplot-files in Section 4.4: The latter is a

4.6. INCLUSION OF SVG-FILES 81

LATEX-file containing text and including the former. To include xxx.pdf of course
the LATEX-packages xcolor and graphicx are required. Moreover, it may happen
that the LATEX-package transparent is required also, depending on the features
used in xxx.svg.

As indicated in [Ilt12], Section 1, the svg-package delegates the transformation
of xxx.svg xxx.pdf and xxx.pdf_tex to inkscape. This is a graphical editor
with export functions which can be invoked in batch-mode also. Of course using
the svg-package has the advantage that no explicit preprocessing is required, the
created files updated by need. It is worth thinking about whether it is worthwhile
writing according packages fig and gnuplot.

On the other hand, this breaks the workflow this software normally applies
to graphic files. In particular, the package creates LATEX main files which are
not removed after the latex run if parametrized accordingly or if something goes
wrong. Also, the svg-package does not provide the full flexibility of a standard
solution. Since this software is still under construction and more than that, is in an
experimental phase, we provide explicit preprocessing of SVG-files using inkscape.
Another problem with the svg-package is, that according to [Ilt12], Section 1, it
does not work on Windows platforms.

Some research shows, that inkscape in the version current at time of this
writing exports mixed PDF and latex: If invoked as

inkscape --export-filename=xxx.pdf --export-area-drawing --export-latex xxx.svg

inkscape creates a file xxx.pdf containing all graphics but text and another file
xxx.pdf_tex containing text and including xxx.pdf. The file xxx.pdf_tex can
be integrated into the latex document as
\def\ svgwidth {0 .5\ textwidth }
\ import {yyy}{xxx . pdf_tex }%
Unlike fig2dev and gnuplot, specifying the files with their full path, has no effect,
i.e. inclusion uses the file name only. Thus, \import cannot be replaced by \input
and so the LATEX-package import is required.

This is essentially the same technique as applied for fig-files and for gnuplot-files
as described in Sections 4.3 and 4.4.

Analogously,

inkscape --export-filename=xxx.eps --export-area-drawing --export-latex xxx.svg

exports files xxx.eps_tex and xxx.eps.
In older versions of inkscape, there was a configuration allowing xxx.eps_tex

to include uniformly both xxx.pdf and xxx.eps. Thus, xxx.pdf_tex could be
deleted and xxx.eps_tex moved to xxx.ptx which in turn could be included into
the main document.

82 CHAPTER 4. GRAPHICS AND PREPROCESSING

As shown in Figure 4.7, for the current version of inkscape, this software
filters xxx.eps_tex into xxx.ptx “manually” so that both xxx.pdf and xxx.eps
are included in xxx.ptx. Then it deletes the original files xxx.pdf_tex and
xxx.eps_tex.

The author has filed a bug report to the inkscape team, to avoid this workaround
in the future.

xxx.svg xxx.ptx

xxx.eps_tex

xxx.pdf

xxx.pdf

\includegraphics{xxx}

\includegraphics{xxx}

inkscape --export-filename=xxx.pdf

inkscape --export-filename=xxx.eps

xxx.pdf_tex remove

filter

Figure 4.7: Conversion of an SVG-file into pdf-, eps- and ptx-files with inclusions

Hello World
From An SVG File!

Figure 4.8: Some svg-picture with text FIXME: uniformity

In contrast to the FIG format, SVG pictures can be created by several programs.
Among those, is also inkscape which can be used like xfig as a graphical editor
with export functionality. In contrast to FIG format, SVG is essentially human-
readable, in fact an XML derivative. The author calls it “essentially”, referring
to the fact, that the format is quite wordy as is illustrated by the source code
F4_07someSvg.svg for the above picture. Nevertheless, it can be an advantage to
go into internals and manipulate with a text editor. Pasting the into VS Code, one
can see the highlighting and a preview, of course provided the extensions described
in Section 3.5.5 are installed.

https://www.simuline.eu/LatexMavenPlugin/fromTex/F4_07someSvg.svg

4.7. PICTURES WHICH ARE NOT TRANSFORMED 83

4.7 Pictures which are not transformed
Figure 4.9 shows some picture included as JPG. This is done as usual with the
command \includegraphics provided by the package graphicx. According to
the documentation [Car16], page 13, the bounding box must be provided somehow.

This may be done via the package bmpsize but alternatively also using the
command ebb. There is some hint, that bmpsize does not work with xelatex. So
maybe ebb is the better alternative. Note that both techniques are available in
distribution TEX Live, but not in MiKTeX.

Research shows, that inclusion is seamlessly if PDF files are created. So the
problem addressed is specific for creating DVI files. Also, at time of this writing,
it seems that also in DVI mode, no problems occur. Nevertheless, the author
experienced errors on missing bounding box and to be safe, provides a way to
invoke ebb on the file xxx.jpg.

With parameter -m, this creates a file xxx.bb containing the bounding box for
dvipdfm, and with parameter -x a file xxx.xbb containing an extended bounding
box for dvipdfmx. The current implementation seems not to make any difference,
whether the bounding boxes are created or not.

Sizes seem to differ in DVI/XDV output after conversion to PDF, depending
on whether dvipdfm or dvipdfmx is used. Only the latter yields the same size as
direct conversion to PDF creates.

Since bounding boxes seem superfluous, we control their creation with a pa-
rameter createBoundingBoxes whether to invoke ebb, which is false by default.
Nevertheless, if we invoke, then we do twice, creating bounded boxes and extended
bounding boxes.

FIXME: further research and further documentation is required.
Note that both for pdflatex and siblings creating PDF-output and for htlatex

in conjunction with dvipdfmx files in the format PDF, PNG, JPG are supported.
This list may be incomplete.

Figure 4.9: Some JPG-picture, directly included

As an example, Figure 4.10 shows the same picture as PNG-file.
FIXME: At the moment, htlatex does not work with pictures at all.

84 CHAPTER 4. GRAPHICS AND PREPROCESSING

Figure 4.10: Some PNG-picture, directly included

Note that in DVI/XDV mode all usual LATEX engines can include BMP-pictures,
whereas in PDF mode only xelatex can do that, maybe because it creates XDV
internally in any case. In contrast, lualatex and pdflatex can not.

Chapter 5

Processing of LATEX Main Files

Given graphics in formats includable in TEX files, which may require preprocessing
described in Chapter 4, this section describes the conversions of LATEX main files
into target files in detail. The most important target file format is PDF. Conversion
into this format is described in Section 5.1. Note that PDF also occurs as source
format for included pictures and as intermediate files. Specific for LATEX is the DVI
format, which is supported mainly for historical reasons.

Almost independent of the format created, inclusion of bibliographies, indices
and glossaries requires additional conversions done by several auxiliary programs.
Bibliographies are described in Section 5.2, indices in Section 5.3 and glossaries in
Section 5.4. Only at the first sight different but behind the scenes quite analogous
is inclusion of results of code evaluations, code in python and other languages
described in Section 5.5. Here, an auxiliary program essentially invokes the language
interpreter.

Sections 5.6 and 5.7 describe running and rerunning auxiliary programs like
makeindex and the LATEX engine, respectively. The latter may be necessary if certain
lists are present like table of contents list of figures or list of tables. Section 5.6
clarifies the exchange of information between the LATEX engines and auxiliary
programs, whereas Section 5.7 essentially describes the exchange of information
between individual runs of the LATEX engine.

Section 5.8 is special in that it is not related with conversion but with checking
reproducibility. This LATEX builder has some built-in build algorithm, but one can
also use latexmk as a build tool in a way that invokes all tools with parameters
given by the configuration. Note that latexmk has a different build algorithm, but
the results should be the same. This is mainly to integrate document development
more seamlessly. For details on motivation and implementation see Section 5.9.

Besides the output formats traditional for LATEX, PDF and DVI describing e.g.
books, Section 5.10 describes creation of HTML, Section 5.11 the creation of ODT
and Section 5.12 creation of MS Word formats like DOCX. Finally, also pure text

85

86 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

can be generated as described in Section 5.13.

5.1. TRANSFORMING LATEX FILES INTO PDF FILES 87

5.1 Transforming LATEX files into PDF files
The next step is to create a PDF file from the TEX files. LATEX distinguishes
master TEX files from TEX files intended to be inputted from elsewhere. Not
taking comments and that like into account, master TEX files roughly have the
form

\ RequirePackage [l 2tabu , orthodox] { nag} % o p t i o n a l
\ documentclass { . . . }

\ begin {document}
. . .
\end{document}

The core of conversion of a TEX file into a PDF file is running a LATEX
engine latex2pdf to a master TEX file xxx.tex. The LATEX engine latex2pdf is
configurable via the parameter latex2pdfCommand. Possible values are lualatex,
xelatex and pdflatex, where the first is the default for which this software is
also tested. It is also possible to pass parameters to the LATEX engine. Besides
conversion into PDF format, all engines offer conversion to the older DVI format
via option --output-format as lualatex and pdflatex, or the alternative XDV
generalizing DVI as xelatex does with the option --no-pdf.

In fact, the engine latex2pdf does much more than converting TEX files to
PDF files. Figure 5.1 shows for latex2pdf set e.g. to lualatex, that besides the
PDF file also a LOG file and an AUX file is created. The LOG file contains logging
information on the run of the conversion and the AUX file transports information
from one run to the next, writing in one run and reading in the next run. Thus,
conversion goes without it, but it is read if present. This is why it is depicted at
input side in dashed lines.

Optionally, an FLS file is created containing paths to the files the converted
LATEX file depends on and a file with ending synctex.gz with information for
mapping locations at the created PDF file to the according input files. This is to
support backward search, meaning click on a place in the PDF viewer opens an
editor in the source file.

What is in fact in the AUX file depends on the package. Among other informa-
tion, also citations and the location of the bibliography file with ending bib are
present. This cannot be used directly in the next latex2pdf run to create the
bibliography, because the entries referenced in the document must be extracted from
the BIB file and sorted. This is done by invoking bibtex between two latex2pdf
runs. Based on the AUX file, bibtex creates a BBL file containing the bibliography,
which is read in the next latex2pdf run. For details see Section 5.2.

Alternatively to bibtex a bibliography can be created with the package

88 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

biblatex in conjunction with the auxiliary program biber. Running a LATEX
engine with package biblatex loaded creates a BCF (bibliography content file (?):
generated by LATEX engines if used with package biblatex) file read by biber. At
time of this writing, this software does not support that option. Nevertheless, for
sake of completeness we added this data path to Figure 5.1.

If an index is demanded, in addition latex2pdf creates a IDX (InDeX file
containing unsorted and multiple index entries; output format of LATEX engines
with package makeindex or similar) file. As the citations, it cannot be used directly
to create an index in the next latex2pdf run, because the index entries must be
collected and sorted before. This is done by invoking makeindex between the two
latex2pdf runs. Based on the IDX file, makeindex creates a IND (INDex file
containing sorted, unified and formatted index entries, output format of makeindex
and xindy) file containing the index, which is read in the next latex2pdf run. For
details see Section 5.3.

If more than one index is demanded, we suggest using splitindex instead of
makeindex which creates one IND file per index.

A more modern technique to create an index is via xindy, but at time of this
writing, this software does not support xindy yet.

If a glossary is demanded, this can be read off the AUX (auxiliary file: input and
output file for LATEX engines; read also e.g. by bibtex) file and a GLO (GLOssary
file containing unsorted and multiple glossary entries; output format of LATEX
engines with package makeglossaries) file containing the index entries is created
and a file with style information. Depending on the configuration, this may be a
IST ((make-)Index Style File: output format of LATEX engines if used with package
glossaries configured for makeindex) file or a XDY (index style file for xindy:
output format of LATEX engines if used with package glossaries configured for
xindy) file. As for the index the IDX file, the GLO file cannot be used directly
to create a glossary in the next latex2pdf run, because the glossary entries must
be collected and sorted before. This is done by invoking makeglossaries between
the two latex2pdf runs. Based on the GLO file, makeglossaries creates a GLS
(glossary file containing sorted, unified and formatted glossary entries; output
format of the makeglossaries tool read by LATEX engines) file containing the
glossary, which is read in the next latex2pdf run. For details see Section 5.4.

Besides makeglossaries, there is a more modern tool, bib2gls, which is not
yet supported by this software at time of this writing.

The package pythontex allows including python code or related in the TEX
(TEX the format, which may also be LATEX) file and to evaluate it. The first
latex2pdf run creates a PYTXCODE (Code file consisting mainly of code snippets
from the TEX file; output format of LATEX engines with package pythontex) file
which contains essentially the code parts of the LATEX file. Invoking pythontex

5.2. BIBLIOGRAPHIES 89

creates by default a folder pythontex-files-xxx with material where code is
already evaluated. In the next latex2pdf run, this material is included in the
document. The pythontex comes with a second command line utility, depythontex,
eliminating all python code from the original TEX file. Optionally, latex2pdf also
creates a DEPYTXC (File containing information to replace code snippets in the
TEX file by the result of their evaluation; output format of LATEX engines with
package pythontex if loaded with option depythontex) file with all information
to replace python code in the original TEX file with evaluated material from
pythontex-files-xxx. Replacement is done by depythontex which by default,
sends the result to stdout, but there is an option to write into another LATEX file.
Converting this new LATEX file yields the same result as converting the original one.
Depythonization is a feature needed e.g. for papers when the publisher does not
accept included code. For details see Section 5.5.

In addition, if a table of contents, a list of figures, a list of tables or a list of
listings is required, also a TOC file, a LOF file, a LOT file and a LOL file is created,
respectively, collecting the according information. Also, if hyper-references are
built, an OUT (contains bookmarks: input and output format of LATEX engines if
used with package hyperref, file ending seems naive) file containing bookmarks
is created. If such a file is present, it is read in and is used to create a table of
contents, a list of figures, of tables and of listings or bookmarks in the second run
of latex2pdf.

To summarize, if a table of contents, a list of figures, a list of tables, a list of
listings or a bibliography, an index or a glossary is present, or if code must be
replaced by their evaluation, a second LATEX run is required to make that material
appear in the PDF output.

If a table of contents and at the same time a bibliography, an index or a
glossary is present, even two further LATEX runs are required: After the first one,
the bibliography, the index or the glossary occurs in the PDF file but not yet in
the table of contents. This happens after the second additional LATEX run. As
described in Sections 5.6 and 5.7, further runs of auxiliary programs mainly to
create index or glossaries, but also under certain circumstances bibliographies and
inserting invoked code, followed by invocation of the LATEX engine latex2pdf may
be necessary.

5.2 Bibliographies
For each occurrence of a command \cite in the TEX file, referring to a document
with given key, latex2pdf writes an according entry \citation with that key
into an AUX file. Note that, if the LATEX main file includes other TEX files
with \include, and the \cite-command is invoked in the included TEX file,

90 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

xxx.ind

xxx.outxxx.out

xxx.idx

xxx.toc xxx.lof xxx.lot

xxx.lol

on used packages
depending
Further files

xxx.bcf

xxx.xdy xxx.ist

yyy.tex

pythontex-files-xxx xxx.pytxcode

xxx.depytx

package
pythontex

xxx.gls xxx.glo

xxx.lolxxx.lot

xxx.toc

xxx.bbl

xxx.aux xxx1.auxxxx1.aux

xxx.lof

xxx.fls

xxx.synchtex.gzxxx.log

xxx.dvixxx.pdf

xxx.texlike zzz.pdf_t
Input files

xxx.xdv

package makeidx or
package splitidxsplitindex

makeindex
package hyperref

bibtex

biber

package listings

xxx-y1..yn.ind

package biblatex

or

pythontex

depythontex

glossaries
packagemakeglossaries

xxx.aux

*latex

option -recorder

option -synchtex=1

lua/pdflatex

lua/pdflatex --output-format=pdf/dvi xelatex --no-pdf

Figure 5.1: Conversion of a TEX file into a PDF, DVI, XDV file

the \citation commands go into the AUX file of that TEX file. Moreover, a
\bibliography-command in the TEX file writes a link to the BIB files containing
the bibliography data into the (top level) AUX file as \bibdata. Note that
\bibliography accepts a list of BIB files, not only a single one, as maybe suggested
by the singular name1. The key given by \cite commands must refer to exactly one
key in the BIB files. Last not least, a \bibliographystyle-command in the TEX
file writes a link to the bibliography style file which determines the appearance
of the bibliography and also the labels and the ordering into the AUX file as
\bibstyle. Typically, the style file comes from the TEX distribution rather than

1In fact, cmdbibliography does not only specify the (source) BIB files, it \inputs the (singular)
bibliography to be created.

5.2. BIBLIOGRAPHIES 91

the user. Its ending is BST (Bibliography Style File read by the bibtex tool).
To create a bibliography, a bibtexCommandmust be run after the LATEX run. The

default command is the traditional bibtex, but there are more modern alternatives
also supported like bibtexu and bibtex8 supporting utf8 encoding and others.
Among the tools which are not supported are biber and mlbibtex.

We run bibtexCommand if either \bibliography or \bibliographystyle is in
the top level AUX file. If there is no \cite-command, bibtex yields an error. If
neither \bibliography-command nor \bibliographystyle-command are present,
then presence of \cite yields an error when running the LATEX engine. So, there is
an error if not either all three ingredients are present or neither.

Essentially, bibtex extracts the citations in the AUX files, unifies them, i.e.
a citation is listed once even if it is used more than once, retrieves the according
entries from the BIB files specified, sorts and formats these entries according to
the BST file and writes all into a BBL (bibliography for a latex document in latex
format: written by the bibtex tool and read by LATEX processors) file which can
be included in the next run of latex2pdf. Formatting includes associating a label
with each key and sorting is based typically on the label. The BBL file consists
essentially in a thebibliography environment listing the \bibitems. These relate
the key and the label given by the BST file and show the text of the bibliography
entry.

Note that after a bibtex-run, two LATEX runs are required: The first one just
puts the bibliography found in the BBL file xxx.bbl into the PDF file at place of
\bibliography as \input{xxx.bbl} would do (which shows why \bibliography
is singular, although a list of BIB files may serve as source) and the labels of
the citations into the AUX file as \bibcite-commands. The second run places
the labels of the citations found in the AUX file at the citations given by \cite.
The package tocbibind described in [WP10], then writes the headline of the
bibliography into the table of contents if option numbib

This software presupposes, that bibtex reads the AUX file and creates a BBL
file and also a BLG (Bibliography LoG file: for bibtex and related) file with logging
output as illustrated by Figure 5.2. From the BLG file this software may determine
whether bibtex emitted an error or warnings.

Vital information on bibtex is found in [Pat88] and in [Mar09]. Also, [Grä96],
Chapter 10 is worth reading in this context.

Note that in the master AUX file one can find also entries \bibcite relating
the labels for bibliography entries to the representations to be inserted for the
\cite commands, but it is the LATEX engine which extracts these mappings from
the \bibitem entries in the BBL file written by bibtex.

The package tocbibind described in [WP10], then writes the headline of the
index into the table of contents, if the option numibib is given.

92 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

at least one
bibliography file

included AUX files
optional:

xxx1.aux

xxx.aux

yyy.bib

zzz.bst

xxx.bbl

xxx.blg

master AUX file

bibtex

Figure 5.2: Conversion of an AUX file into a BBL file using bibliographies

5.3 Indices
If an index is wanted, the command \makeindex must be issued before any index
entry is requested. In fact, this does nothing but opening xxx.idx given a LATEX
main file xxx.tex. The IDX file collects all index information extracted from
xxx.tex.

Let us first assume that only a single index is wanted. For each occurrence of a
command \index in the TEX file, specifying an index entry, latex2pdf writes an
according entry \indexentry into the IDX file which relates the entry with the
page number where it occurred.

For example \index{ant-task} occurring on page 3 creates an entry
\ indexent ry {ant−task }{3}
in the IDX file. Caution: If the IDX file is not open, \index has no significant
impact and in particular no index is created, without any warning.

To create an index, a makeIndexCommand described in Table 6.6 on page 143
must be run after the LATEX run. The default command and the only one currently
supported by this software, is the traditional makeindex. Similar but based on
Unicode are upmendex and xindex. Whereas in the context of glossaries xindy is
still used, for pure index creation for which xindy has been designed originally, it
seems widely abandoned. The manual is [Sch14].

At time of this writing, quality of output and above all quality of logging of
errors and warnings given by makeindex as described in [Mös98], Section 5 is not
yet fully reached by upmendex which is described in [Tan24]. Even worse, xindex
described in [Vos24] shows poor quality and seemingly does not log errors and
messages at all. Thus still makeindex is preferred usage, as described in Section 10,

5.3. INDICES 93

but it is easy to adapt patternErrMakeIndex and patternErrMakeIndex also
described in Table 6.6 to upmendex or even so these parameters apply to both
makeindex and upmendex.

Note that entries in the IDX file can occur more than once, even with the same
page number. The task of makeindex and related is, to sort the index entries
given in the IDX file and within each entry to sort the page numbers unifying
same page numbers and simplifying by using ranges and writing the result to an
IND file, which essentially consists of an theindex environment listing \items and
\subitems.

The behavior of the various makeIndexCommand-tools varies if the IDX file is
empty: upmendex does not create an IND file at all, makeindex creates and empty
one and only xindex creates an IND file with an empty theindex environment.

Then the makeindex-command is applied to the IDX file which sorts keywords
and for each keyword collects the according page numbers, sorts it and writes the
result into a IND file. In the next run of latex2pdf, the \printindex-command
in the TEX file includes the index much like \inputxxx.ind. The most basic
package to provide this command is makeidx described in [BLC+14]. In addition,
makeidx provides the command \see which is for cross-reference within an index.
The package tocbibind described in [WP10], then writes the headline of the index
into the table of contents, if the option numindex is given.

The same document, [BLC+14] also describes the package showidx which prints
index entries at the margin of the document. This is for debugging only.

This software presupposes, that makeindex converts the IDX file into an ind file
containing the index and creating also an ILG (Index LoG file:: for makeindex and
related; content depends strongly on the tool) file with logging output as shown
in Figure 5.3. From the ILG file this software may determine whether makeindex
emitted an error or warnings.

xxx.idx
makeindex

xxx.ind

xxx.ilg

Figure 5.3: Conversion of an IDX file into an IND file

The main restriction of the package makeidx is, that only a single index can be
created. The reason is that, latex2pdf creates a single IDX file and makeindex
creates a single ind file from that, representing a single index.

To overcome this restriction, replace package makeidx and makeindex with
package splitidx and splitindex both described in [Koh16].

94 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

Using package splitidx instead of makeidx, still the commands \index and
\printindex can be used and both work as for package makeidx. Thus, also
the tool makeindex can be combined with package splitidx. This shows that
splitidx is a full replacement of makeidx, if a single index is required besides
supporting multiple indices.

To support multiple indices, splitidx offers the command \newindex[…]{…}
to define a new index with given identifier and optional headline. Besides indexing
command \index, there is the command \sindex[…]{…}, with optional index
identifier.

Also command \printindex has additional variants, among those write all
indices or write the index of a given identifier \printindex[…]. Note that there is
a special identifier, idx referring to the main index. So \sindex[idx]{…} mainly
behaves as \sindex{…}.

Option split of splitidx makes latex2pdf creating IDX files xxx-y.idx
directly. Here y represents the identifier of an individual index which is idx for
entries created by \sindex[idx]{…}, \sindex{…} and \index{…}. These IDX files
can be transformed individually with makeindex into IND files creating log files
ILG as illustrated in Figure 5.4. Since latex2pdf can keep open only up to 16
output streams at once, not all of which can be used to create a file xxx-y.idx,
this approach allows a limited number of indices and is thus not recommended and
not supported by this software.

xxx-y.idx

xxx-y.ilg

makeindex
xxx-y.ind

Figure 5.4: Not supported: Conversion of IDX files into IND files

Instead, splitidx is supported without option split. Then latex2pdf creates
a single IDX file but \sindex[y]{…} creates lines \indexentry[y]{…} in the IDX
file which allow to identify the index y. For example \newindex[Packages]{pkg}
defines a new index of LATEX packages and \sindex[pkg]{splitidx} on page 3
indicates that index there shall be an entry splitidx referring to page 3. The
according entry in the IDX file is as follows:

\ indexent ry [pkg] { s p l i t i d x }{3}

Note that both \sindex{…} and \index{…} create entries \indexentry{…} as with
a single index.

5.3. INDICES 95

The program splitindex splits up the single file xxx.idx into several IDX files
xxx-y.idx. Besides the lines \indexentry[idx]{…} also the lines \indexentry{…}
go into xxx-idx.idx. Then splitindex applies makeindex to each of these IDX
files separately creating files xxx-y.ind and according ILG files, as illustrated in
Figure 5.5.

Note that splitindex itself does not create any kind of log file. Strictly
speaking, there are at least two variants of splitindex implemented in different
languages and with slightly different behavior. At time of this writing, only the
main variant in Perl is supported, but it may be interested to generalize this to the
version in the Lua language.

xxx.idx

xxx-y.idx

xxx-y.ilg

makeindex xxx-y.ind

splitindex

invokesplit

Figure 5.5: Conversion of an IDX file into IND files

The package splitidx is intended to be used in conjunction with the program
splitindex, but it can also create a single index and if so, it is better to use it in
conjunction with makeindex or that like. This software can decide on the IDX file
whether there is a line specifying an index like so,

\ indexent ry [pkg] { s p l i t i d x }{3}
or neither has an explicit index, i.e. like so

\ indexent ry [pkg] { s p l i t i d x }{3}
In the first case splitindex is invoked, in the second makeindex is invoked.

For usage of further packages supporting multiple indices which are not intended
to be used with this software, see Chapter 8.

It is possible to configure the makeindex-command and to pass arbitrary options.
CAUTION: For the usual makeindex-command, the options -o specifying an output
file and -t (transcript) specifying the logging file are not allowed, because this

96 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

breaks the expectation to find the sorted index in file xxx.ind and bypasses the
detection of errors and warnings of this software, respectively. Also specifying a
style file via option -s is not recommended because this is used to create a glossary
and so breaks glossary creation as described in Section 5.4.

Information on the makeindex program can be found in [Mös98] and in [Lam87].
Also, there is a site [LRZ] describing all available options for makeindex.

As indicated above, the program splitindex invokes makeindex. Its options
are described in [Koh16], Section 3.10. Since the long option names are not
understood in all environments, only the short options are recommended.

Since splitindex must satisfy the interface given by Figure 5.5, the option
--help and its shortcut -h are not allowed. Likewise for option --version and
its shortcut -V. The option --makeindex <makeindex>, resp. -m <makeindex>, is
used with the makeindex command used for single indices. Thus, this may not be
given explicitly but is specified implicitly. Also, the option --identify <regex>,
resp. -i <regex> must be set implicitly because it must be the same expression
as used to ***** Then splitindex.tlu is not allowed, because this has another
expression.

Only allowable seems -V, the shortcut for --verbose.
Then comes the name of the index file to be processed without suffix.
The program splitindex invokes makeindex. The option -- coming after the

filename, indicates that all following options are passed to makeindex

5.4 Glossaries
CAUTION: The method described here, has at least two severe bugs: The number
of reruns of the LATEX engine and also of makeglossaries is not guaranteed as a
consequence of a bug in rerunfilecheck and the fact, that it does not fit current
versions of makeglossaries. In addition, entries of the glossaries not mentioned
directly in the document but must be included because they are used in the
explanation of entries to be included are not treated properly.

As a consequence, this document, or to be more precise its glossary, could not
always be reproduced and so the author excluded the glossary until the problem is
fixed.

In addition, it is a conceptual weakness that a glossary data base shall be
centralized and shall thus not be included in a LATEX document and not even be
written in LATEX. All weaknesses, bugs and conceptual shortcomings are overcome
by the package glossaries-extra in conjunction with the auxiliary program
bib2gls which will replace glossaries and makeglossaries. For the time being,
use glossaries with caution.

Creating glossaries requires the package glossaries described in [Tal24b].

5.4. GLOSSARIES 97

By default, package glossaries creates a single “main glossary”, which can be
switched off specifying the option nomain described in Section 2.6. In this case at
least, more specific glossary types with according headline must be specified. As
specified in [Tal24b], Section 2.6, glossaries offers acronyms, symbols, numbers
and index. To avoid collision with indexing as described in Section 5.3, this software
does not allow the latter. Moreover, the package glossaries even supports user-
defined glossary types, but this software does not, mainly to keep the internal build
in line with build using latexmk. For details see Section 8.4.

Also, the package glossaries offers sorting and unifying either via makeindex
as for indices or via xindy, and it offers also to do without external programs. In
contrast, this software supports only the variant using makeindex.

As for creating indices there is a LATEX-command \makeindex, to create a
glossary there is a LATEX-command \makeglossaries, but the latter is not built-in
as \makeindex but provided by the package glossaries. If xxx.tex is the LATEX
main file, \makeglossaries opens the glo file xxx.glo containing glossary entries
for writing. As the built-in command \index writes entries into the IDX file
defining the index, the command \gls defined by the package glossaries writes
an entry into the glo file. Note that xxx.glo typically contains entries more than
once and that the entries are not sorted.

To perform sorting, formatting and typically also unification, the package
glossaries allows three mechanisms. This software supports two of them: via
the shell command makeindex, which is also used for indices, and via the shell
command xindy. Using makeindex is the default but can also be activated through
\usepackage[makeindex]{glossaries}. Using xindy instead of makeindex is
triggered through \usepackage[xindy]{glossaries}. Accordingly, for option
makeindex the AUX file receives lines

\providecommand\@ i s t f i l e name [1] { }
\ @ i s t f i l e name {manualLMP . i s t }

whereas for option xindy, there are lines

\providecommand\@ i s t f i l e name [1] { }
\ @ i s t f i l e name {manualLMP . xdy}
. . .
\providecommand\@xdylanguage [2] { }
\@xdylanguage{main}{ e n g l i s h }
\providecommand\@gls@codepage [2] { }
\@gls@codepage{main}{}

This software neither invokes makeindex nor xindy directly. Instead, it invokes
the shell command makeglossaries invoked without file ending which determines
from the AUX file whether to invoke makeindex nor xindy. Accordingly, it writes

98 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

the style definition by creating an ist file xxx.ist or an xdy file xxx.xdy if
makeindex or xindy is specified as package option, respectively.

Seemingly, makeglossaries relies on the AUX file to determine whether to in-
voke makeindex or xindy for sorting and unification. Then it invokes the according
command and writes a LOG file with ending glg, redirecting the logging output
of makeindex or xindy adding own output so that a glg file may be written, even
if e.g. makeindex is invoked and does not. In any case, if the glg file is written,
makeglossaries writes text matching

(^*** unable to execute:)

in the glg file if an error occurs, no matter whether makeindex or xindy is invoked.
Possibly, there are cases where an error causes no glg file to be written. If no
error occurs, a glg file is written and if warnings are emitted, they either come
from makeindex or from xindy. Thus warnings may be detected with the patterns
defined by makeindex and by xindy.

The style list (which is the default) is set in the form
\usepackage [s t y l e= l i s t] { g l o s s a r i e s }
where [Tal24b], Section 13 lists predefined styles. So, the style determines the
content of the style definition, whereas the options makeindex and xindy specify
the form in which the style is encoded and thus the ending of the style file, which
is either ist or xdy.

Sorting the glo file, as said above, currently is only supported using the
command makeglossaries. The allowed options are essentially those making
sense for makeindex and those making sense for xindy. If the shell command
makeglossaries invokes makeindex of course only the according options are passed
supplemented by additional options -s, -t, -o, to specify the ist file, the glg file
(the transcript file) and the gls file, respectively, which is the result of sorting, the
output file, and contains the entries of the glo file just sorted, formatted and unified.
So for a tex main file xxx.tex the program makeglossaries invokes

makeindex -s "xxx.ist" -t "xxx.glg" -o "xxx.gls" "xxx.glo"

Accordingly, if the shell command makeglossaries invokes xindy of course only
the according options are passed supplemented by additional options -M, -t, -o.
This is illustrated in Figure 5.6.

5.5 Including code via pythontex
The package pythontex, described in [Poo21] originally allowed including Python
code into a latex document. Later on, further languages were added, most notably

5.5. INCLUDING CODE VIA PYTHONTEX 99

xxx.aux

xxx.xdy

xxx.glo

xxx.ist

xxx.gls

xxx.glg

decides whether makeglossaries
invokes makeindex or xindy

xindy

makeindex

makeglossaries

Figure 5.6: Conversion of a glo file into a gls file using makeglossaries

octave or Matlab, and the user can easily extend it to further languages as sketched
in [Poo21], Section 7. Of course, to that end, the interpreter for the desired language
must be installed. The meaning of the term “including” used above ranges from
mere listing to pure execution and comprises also inserting results of execution. A
field of application is also creating figures.

Note that like the package splitindex, also pythontex comes with an ac-
cording auxiliary program, in this case, besides pythontex also depythontex.
Consequently, [Poo21] is not only on the package but also on the corresponding
command line tools. Since [Poo21] is quite detailed, there is an introduction [Poo]
and a gallery [Poo17]. For background on the intentions of package pythontex,
consult [Poo15]. Information required to integrate pythontex into this software
partially goes much beyond the official documentation and is collected in [Rei22].
It could also be interesting for the user for debugging.

Running the LATEX engine on a file xxx.tex with package pythontex loaded
yields a file xxx.pytxcode and if the package is loaded with option depythontex
also a file xxx.depytx. If the file xxx.pytxcode is present, this software invokes
the command line tool pythontex (same name as the according package) to
xxx.pytxcode (without ending) which converts this into a variety of output files,
which are, without further configuration, all in the folder pythontex-files-xxx
as shown in Figure 5.7, which is described in more detail in [Rei22], Section 3.
Note that this software uses the wrapper pythontexW of pythontex described in
Section 3.5.7, instead of pythontex itself. The figure reflects this.

Running the LATEX engine again, includes all the output files *.stdout in the
PDF file or whatever output file created.

An important remark is that lualatex is the preferred engine, because files
*.stdout can impose heavy memory usage and currently lualatex is the only
engine allocating memory dynamically.

As one can see, pythontex cooperates with lualatex in a way also bibtex
or the other auxiliary programs do. Although pythontex, at time of this writing

100 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

in version 0.18, is quite mature, it refrains from writing a log file and indicates
errors and warnings just on standard output or error output. This is unlike all the
other auxiliary programs in a line with pythontex. As a consequence, in particular
warnings are difficult to detect and cannot be detected in a uniform way. Thus,
the author wrote a little wrapper, called pythontexW and place it where it can be
found, e.g. in the folder of pythontex.

Accordingly, depythontex behaves in a non-standard way: Firstly, by default,
it does not output a result file but outputs on standard output. This can be
changed using the option --output or -o for short. Also, depythontex changes
into interactive mode if the output file is already present. To avoid this, the option
--overwrite is required. Overwriting without asking is the standard behavior of
all other auxiliary programs. As pythontex also depythontex does not write a log
file but just prints its errors and warnings. Thus, the author wrote a little wrapper,
called depythontexW and described in Section 3.5.7, and place it where it can be
found, e.g. in the folder of depythontex.

Unfortunately, as the original author of pythontex shifted his focus away from
LATEX towards Markdown, he ceased development and so development slowed down
next to zero. In the meantime, python 2 came out of use and having a link called
python, pointing to either python2 or to python3 as (de)pythontex requires,
went out of fashion. So, the user must add the link manually.

The package pythontex and the according auxiliary programs are highly con-
figurable, more than this software allows.

In particular, in the LATEX document, the commands \setpythontexoutputdir
setting the output directory and \setpythontexworkingdir setting the working
directory shall not be used, because this software assumes the default, that the
working directory is the directory containing the LATEX main file xxx.tex and the
output directory is in the working directory and its name is pythontex-files-xxx.

Further, the package pythontex can be configured with package options when
loading the package. Since this software is designed for reproducibility, most
appropriate would be to specify runall=true meaning that even if no python
code is modified the auxiliary program pythontex executes the python code in
the document. Also, it is appropriate to specify rerun=always. Note that the
defaults are runall=false and rerun=errors. This behavior makes sense to
speed up creation of the document, but it differs from the behavior of all other
auxiliary programs and causes the check for update of output files to fail. Moreover,
reproducibility is not as easily shown.

The package documentation [Poo21] suggests, that this makes a difference
between runall=true/false and rerun=always/errors if external sources are
modified, but as is proved in [Rei22], Section 2.1, the package translates package
option runall=true/false into key value pair rerun=always/errors and this is

5.5. INCLUDING CODE VIA PYTHONTEX 101

the only information pythontex obtains from the package, so there is no difference.
Also, the auxiliary program pythontex itself can be configured via command

line arguments. For the package options runall and rerun, there are according
command line options --runall and --rerun with the same scope. Whereas
the package merges options runall and rerun silently, the auxiliary program
pythontex emits an error, if both are combined. Essentially one can forget about
runall and stick to rerun.

Strange enough, according to [Poo21], Section 4.1, package options overwrite
command line options. This software shall invoke pythontex with the option
--rerun=always which is thus specified as the default. To force unconditional
update, this is not sufficient. Instead, this software relies on an undocumented
feature of auxiliary program pythontex which is likely not to change: If one of
the expected output files is missing, it recreates all output files, independent of
command line options and package options. Thus, this software deletes one output
file if present, before executing pythontex.

When this software invokes pythontex the exit codes may not be changed via
--error-exit-code, i.e. if specified then with value true. Neither the options
--interactive, -h, --help or --version are allowed. Currently, this software
does not check for options which are not allowed. Fortunately, the latter two
command line options have no counterpart in the package configuration.

If we place some code, e.g. python code as inline code using \pyc

\ usepackage [depythontex] { pythontex }
. . .
\pyc | p r i n t (r f ' Python i n s i d e l a t e x says : " He l lo World ; 1+1={1+1}" ')|

the code is really evaluated, and the string result is included at proper place as
illustrated by the following text which is created by python:

Python inside latex says: "Hello World; 1+1=2" .

Note that the typewriter font is not created by python, it is explicitly set to
highlight the string created by python, but it is python which evaluates the little
computation and which prints the string.

Since pythontex is written in python, including python code in the LATEX docu-
ment uses the python interpreter already installed, as a prerequisite of pythontex.
To use another language, the according interpreter must be installed in addition to
python.

Figure 5.8 shows the files converted by depythontex. As for depythontex, this
software uses the wrapper depythontexW of depythontex instead of depythontex
itself. This is reflected in the figure.

102 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

xxx.pkl

py_se_default_1..y.stdout

py_se_default_1..y.py

xxx.plg

xxx.err xxx.out

pythontex
xxx.pytxpyg

xxx.pytxcode xxx.pytxmcr

#! /bin/bash
bash >=3.0

pythontexW only

folder pythontex-files-xxx
pythontex $ |& tee ${!#}.plg

Figure 5.7: Conversion of a pytxcode file using pythontex

xxx.dplg
folder pythontex-files-xxx

xxx.tex xxx.depytx.tex

xxx.depytx

depythontex --overwrite -o xxx.depytx.tex

#! /bin/bash

depythontex $ |& tee ${!#}.dplg
basd>=3.0

depythontexW only

Figure 5.8: Conversion of a depytx file using depythontex

5.6 Running and rerunning auxiliary programs
After describing the interface between the LATEX engine and the auxiliary pro-
grams in Section 5.6.1, Section 5.6.3 explains why we don’t use the package
rerunfilecheck to determine when to (re-) run auxiliary programs.

5.6.1 The interface between LATEX and auxiliary programs
Auxiliary programs perform tasks which LATEX cannot carry out at all or only with
bad performance, for example adding bibliographies which comprises sorting or
executing program code.

The interface between the LATEX engine and an auxiliary program is always
implemented via files: In the first run, the LATEX engine writes a file or files specific

5.6. RUNNING AND RERUNNING AUXILIARY PROGRAMS 103

for the auxiliary program or at least writes entries specific for the auxiliary program
in a standard file or even both. Then the auxiliary program is run which creates
other files which in turn must be read back, in a second run of the LATEX engine.
So the run of an auxiliary program is always enclosed between two runs of a LATEX
engine.

Typically, the LATEX run needs a LATEX package associated with the auxiliary
tool which performs reading and writing. An exception is bibtex and friends
for which LATEX engines support communication out of the box. An example
with more complicated communication is makeglossaries with associated package
makeglossaries which writes lines into the AUX file and which typically writes
the main glossary into a GLO file. The tool makeglossaries which is invoked
without ending, reads the AUX file, determines which other files to read, typically
the GLO file also and writes the result into the GLS file. This is read back by the
package makeglossaries in the next run of the LATEX engine.

5.6.2 When running an auxiliary program
After the first run of the LATEX engine, one must decide which auxiliary programs
to run. For each auxiliary program, there is a specific file it reads or at least specific
entries in a general file, typically the AUX file. If this file or these entries exist, the
auxiliary program must be run and after the LATEX engine must be rerun to read
in the data created by the auxiliary program. As is discussed for each auxiliary
program separately in Section 5.6.3, this file or these entries may change after each
run of the LATEX engine and as a result, the auxiliary program must be rerun as
well. So, LATEX engine and auxiliary program maybe must be run alternately.

Instead of checking whether the relevant data really changes, only the number
of relevant lines and a hash is taken into account. This bears a minimal risk of
not rerunning the auxiliary program although needed. Note that also package
rerunfilecheck is based on hashes and bears the same risk.

It is an interesting detail, that deciding whether an auxiliary program must be
run at all, i.e. for the first time, is just based on the existence of a specific file or of
a specific line in a file, not comprising all pieces of information read by the auxiliary
program. Nevertheless, if it is decided that the auxiliary program must be run, it
is clear that the LATEX engine must be run after also and so the information may
change. So one must be prepared for a rerun check. For this, all the information in
the file(s) relevant for the auxiliary program must be hashed.

From the second run of the LATEX engine on, only those auxiliary programs
must be checked for rerun condition, for which a hash is present.

After these quite abstract considerations, let us apply these to the concrete
auxiliary programs supported.

104 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

5.6.3 Why rerunfilecheck is not used for auxiliary pro-
grams

As described in Section 2.1, package rerunfilecheck is used to check whether
the LATEX engine must be rerun, and its authors also intended it to check for need
of rerun of auxiliary programs. While this works satisfactory for a single index,
it fails for multiple indices. Likewise, support for glossaries is buggy and works
only in case of a single glossary, which in addition must be the main glossary. In
contrast, the package glossaries supports multiple glossaries, with and without
main glossary and even allows user-defined glossaries. It is awkward to implement
rerun check for all this functionality with rerunfilecheck.

It may be surprising, that there are situations where even bibliography processors
need to be rerun, among these backlinks, and citations in headlines and glossaries.
Package rerunfilecheck does not take this into account. Accordingly, even
pythontex may need a rerun, e.g. if code is executed in headlines or in captions of
floating objects, because this may insert additional invocations and may change
invocation order which may lead to different results.

While many auxiliary programs depend only on a subset of entries in their
source file, rerunfilecheck can take files into account only as a whole. As a
consequence, even if no rerun is required because the relevant entries did not
change, rerunfilecheck could trigger useless rerun, because irrelevant entries in
the relevant file changed.

Tanking all these aspects into account, we decided to provide an internal
algorithm for rerun check of auxiliary programs, which is based on the ideas of
rerunfilecheck but avoiding all its shortcomings.

Note also, that besides whether to rerun an auxiliary program, there is also
the question in which case to run it at all, i.e. for a first time. Since package
rerunfilecheck interprets a newly occurring file as a changed file, this case is
addressed implicitly.

Unfortunately, not all packages associated with auxiliary tools give a hint if
the auxiliary program must be run.

As described in Section 5.1, running a LATEX engine as latex2pdf may detect
the presence of a bibliography, an index and/or of a glossary and writes raw files
to describe them. After that, an intermediate step is required, sorting, unifying
and formatting the entries. This is always done by an external program, we call
an auxiliary program. Similarly, the presence of code to be interpreted may be
detected which is also written in a separate file and an external program, pythontex
must be run to run the code in sequence and in many cases to determine the result
of invocation.

In the next step, the LATEX processor must read in the results of the auxiliary

5.6. RUNNING AND RERUNNING AUXILIARY PROGRAMS 105

programs again to write bibliography, indices and glossaries and to insert the
results of code invocations. Also, except the code invocations, all other pieces of
information typically go into the table of contents. If code is invoked in a headline
or in a caption, the result of the code invocation goes into the TOC and in the
list of captions, e.g. the list of figures LOF also. So in any case, after an auxiliary
program the LATEX processor must be rerun.

Obviously, the run of a LATEX processor may change page numbers and thus
invalidate the index or the glossary. So the auxiliary program to create the index
or the glossary must be rerun if the LATEX processor changes the input file for the
auxiliary program creating index or glossary and after that, the LATEX processor
must be run again.

What is less obvious is, that bibliographies may be invalidated also, e.g. because
of a backlink or because a bibliographic reference occurs in a glossary. Even code
may be invalidated by a run of the LATEX processor if some code occurs in a floating
object, e.g. in the caption or in a glossary. So code invocations may change order
and also there may be additional code occurring not before later runs of the LATEX
processor. So also in this case, the according auxiliary program, pythontex must
be rerun after the run of the LATEX processor.

Summarizing, a run of the LATEX processor may trigger invocation of each
auxiliary program. This must be done if the according raw file changes. Note
that various auxiliary programs share the AUX file to get information. So only
the aspects relevant for the specific auxiliary program shall be taken into account.
What makes things a bit more complicated is, that including TEX files yields
included AUX files which must be taken into account also.

To implement rerun check completely reliable, huge parts of text files, a lot
of information must be stored. Thus, we go a way like package rerunfilecheck,
detecting only the change of number of relevant lines and the according hash. In
extremely rare cases, this software may fail to rerun a program although needed,
because number of relevant lines or its hash don’t change although contents change.

Note that we only use the concept of rerunfilecheck to detect running and
rerunning auxiliary programs, but we do not use the package rerunfilecheck
itself for this task. This is because supporting all relevant auxiliary programs and
also included AUX files would require considerable extensions on rerunfilecheck
and would impact considerable dependencies. So, as described in Section 5.7,
rerunfilecheck is used to control rerunning the LATEX processor as far as auxiliary
programs are not involved, whereas detecting auxiliary programs to be rerun is
done internally while the algorithm is inspired by the package rerunfilecheck.

106 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

5.7 Rerunning the LATEX processor

CAUTION rework needed
FIXME: a word on change in toc, lof, lot and lol.
As indicated in the previous sections, latex2pdf must be rerun, if an auxiliary

program like bibtex, makeindex or makeglossaries had been run.
Likewise, if a toc file, a lof file, a lot file or a lol file had been created in the

first latex2pdf run, another run is needed to read in these files to create a table
of contents, a list of figures or a list of tables, respectively. Note that for all these
cases, the LOG file does not allow to detect that latex2pdf has to be rerun, by
matching a fixed pattern.

After the second run of latex2pdf, the table of contents, the list of figures, the
list of tables and the list of listings are included and a section with the bibliography,
the index and the glossary are inserted. It takes a third run of latex2pdf to
include the bibliography the index and the glossary into the table of contents. Also,
it takes that third run to replace the citations with the proper labels given in the
bibliography.

Inserting the table of contents, the list of figures, the list of tables and the list of
listings may shift the subsequent text which may require another run of latex2pdf
to get the page numbers right. As described in Section 5.6 intermediate runs of
auxiliary programs like makeindex may be required and these also require another
run of latex2pdf also to get the page numbers right.

The package rerunfilecheck allows detecting file changes via a hash almost
for sure, and writes an according message into the LOG file. This is offered for
pure rerun control of latex2pdf based on TOC, LOL, LOF and LOT, but also on
the OUT file written by package hyperref. Partially, it supports also the need to
rerun auxiliary programs, but for sake of uniformity, we refrain from using this,
and rely on in internal algorithm also based on hashes.

Only for rerunning latex2pdf alone, we rely on package rerunfilecheck. This
software just reruns textttlatex2pdf if it detects the pattern of warning written by
rerunfilecheck into the LOG file.

Note that there are several packages which require additional runs, such as
the package longtable, which may vary dimensions of tables. This software
presupposes, that all these reruns may be detected by matching a fixed pattern in
the LOG file. Since packages are frequently changed and new packages are written,
also the pattern cannot be fixed. Thus, it is configurable.

Note that, if a package requires running other programs between two runs of
latex2pdf, this may require a change in this software.

5.8. CHECKING REPRODUCIBILITY 107

5.8 Checking reproducibility
There are use cases, where it is extremely important that the according artifacts
are really reproducible. One is when we have to deliver the sources and the receiver
has to reconstruct the artifacts. Another obvious use case is integration test for
this software by ensuring that each artifact created is equivalent with a confirmed
version, although this software changed. Details are given in Section 10.

Currently, reproducibility checks are supported for PDF files only. The prob-
lem with PDF files is, that besides visible contents they contain also metadata
(see [PDF08] or [ISO20], each Section 14.3), which depends on the run of the
conversion. For example the timestamp and the timezone of conversion goes into
and derived from these other values.

There are two strategies to deal with the problem:

• Make the build process reproducible. The advantage of this approach is that
diffing is quite simple, fast and reproducible: it is byte by byte as provided
by command diff. This is easily done with a fixed installation but tends to
break with update of tools.

• Use diff tools implementing a weaker notion of equivalence, in a sense visibility
equivalence of some degree. One approach is the script vmdiff described in
Section 3.5.6 which combines visibility equivalence with equivalence of part
of metadata.

Since the first one works very well, it is the one we describe here, but it is
always possible to configure a diff tool with a weaker equivalence check.

The first question is, whether reproducibility is requested. It is, if there is
according magic comment in the LATEX main file requires this as described in
Section 3.1.1.2. If there is no such magic comment is present, if the setting chkDiff
specifies so. If in this section settings are given without explicit reference, they are
described in Table 6.13 on page 154 in Section 6.13.

Since date and time both visible and in the metadata of a PDF document is
given relative to a timezone, for reproducible builds compilers must run with a
fixed timezone and, as reproducibility shall not break if changing a timezone or if
the country running the build changes between daylight saving time and standard
time, we chose a uniform timezone namely UTC.

If a LATEX main file is already under reproducibility control, then there is an
according original PDF file in diffDirectory or in a subfolder to be compared
with a newly created PDF file which occurs in a subfolder of the TEX source
directory texSrcDirectory described in Table 6.1 on page 126. The PDF file for
comparison has the same path relative to diffDirectory as the created PDF file
relative to texSrcDirectory.

108 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

First pdfMetainfoCommand is used to extract metadata CreationTime from
the original PDF file. This comprises time and timezone which is UTC.

The compilation to create the new PDF file is run in an environment with that
timezone and with that creation time. In addition, there is an environment variable
forcing that the timestamp does not only affect metadata but also visual data of
the PDF file to be created, as e.g. typically the date at the front page. Note that if
the PDF file is created from TEX files via DVI/XDV files, both engines need the
appropriate environment.

After creating the new PDF file with this environment, coincidence with the
original PDF file is checked using the tool given by setting diffPdfCommand
described in Table 6.13. If the actual artifact does not coincide with predefined
one according to the chosen diff tool, a build exception is thrown as specified in
Table 7.7.

If a LATEX main file is not already under reproducibility control, then no
original PDF file exists. In this case, the environment for compilation only ensures
the timezone UTC. Then the created PDF file is copies at proper place into
diffDirectory – that’s all for setting a document under reproducibility control.

Finally, if a LATEX main f8ile file is under reproducibility control but is to
be changed in a way that also the according PDF file is affected, then before
compilation just the original PDF file is deleted, and the workflow is as setting
under reproducibility control.

Reproducibility is affected or even supported by various injections as defined
in Section 3.5. First, the generic header described in Section 3.5.2 affects meta-
data, above all because it loads the package hyperref. Part of this metadata is
overwritten by another header described in Section 3.5.4, to improve security and
privacy, but enough metadata remains to keep up reproducibility. Reproducibility
is guaranteed with the full set of metadata or with somehow reduced metadata.
The only piece of information needed for reproducibility is CreationDate and this
is preserved by the headers. Removing this also has severe consequences so that we
can assume it is preserved. On the other hand, removing metadata may stabilize
reproducibility as this is true for the banner which identifies the latex compiler and
its version and consequently breaks reproducibility in any version change. Details
to reproducibility with a focus on metadata are given in [Rei23b], Section 4.

Obviously, reproducibility checks cause work when putting a document under
check, i.e. in the end phase of document development as defined in Section 3.6 or if
the source document changes, i.e. if document development is entered again, or if
the output PDF changes unintended normally, although the sources did not change
in an obvious way, which triggers again document development searching the cause
of the change in the sources.

This LATEX builder is not the tool for document development. Instead, Sec-

5.8. CHECKING REPRODUCIBILITY 109

tion 3.6.2 suggests to use latexmk for, and describes how latexmk is integrated
in this LATEX builder: This builder writes a config file .latexmkrc reflecting the
settings of this software, at least to some extent. The config file .latexmkrc is again
written as an injection and is described in Section 3.5.1. It supports reproducibility
checks even reading magic comments, checking existence of original PDF file and
reading its timestamp if the PDF file is present. Creation of the new PDF file takes
timestamp and timezone into account.

Two further injections may be helpful in the context of reproducibility checks,
both described in Section 3.5.6: ntlatex to create a PDF file and vmdiff realizing
a weaker variant of diffing tool as described above: It checks for visual equality
and equality of metadata.

For updating metadata only, we suggest the following technique: Keep the
original PDF file in diffDirectory and check with vmdiff that visually, the PDf
file remains the same and that the correct metadata is updated. Of course, a
new timestamp is wanted. So in a second step, the original PDF file is deleted,
compilation is repeated, e.g. by ntlatex and copied into diffDirectory.

There are rare occasions where the timestamp shall be set explicitly. This is
not possible directly as it is read off from the original PDF file. We suggest to use
exiftool to modify the CreationDate of the original PDF file in diffDirectory
before compilation. This is done by something like

exiftool -PDF:CreateDate=2020-01-01T00:01:02Z xxx.pdf

Here, the option PDF:CreateDate is in fact the name of the tag to be written.
Note that the timezone must be UTC represented by the Z signifying zero time
offset compared to UTC. The attentive reader may wonder why the option is
PDF:CreateDate instead of CreationDate. One may check with pdfinfo, that
really CreationDate is modified. Note that exiftool writes the original PDF file
into xxx.pdf_original

Two important details are not so obvious:

• Not only the given metadata is changed but also all metadata depending on
it, in this case the trailer ID. This is to keep the PDF file consistent.

• The metadata is not really overwritten, but it is hidden by new metadata.
In fact, exiftool uses incremental update specified for the PDF format,
adding a layer describing the modification. All modifications done can also
be undone by

exiftool -PDF-update:All= xxx.pdf

110 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

unless the PDF file has been linearized. LATEX to PDF compilers always
create linearized PDF files and never update incrementally.

To know that changing metadata is done by incremental update is important,
insofar as a PDF file with modified timestamp and timezone differs from a PDF
file compiled directly with the given timestamp and timezone; it is shorter. So,
updating the timestamp of the PDF file in diffDirectory does not yield a PDF file
which is reproduced. Compilation leads to another PDF file and only the updated
timestamp is reproduced. This compiled PDF file is reproduced, so copying it
the into diffDirectory solves the problem: Next compilation yields a PDF file
with the correct timestamp and timezone, and it coincides with the PDF file in
diffDirectory.

When subjecting a document under reproduction control with a predefined
timestamp, then initially there is no original PDF file. One could place any PDF
file in diffDirectory, overwrite the timestamp and timezone by exiftool. Is
content is immaterial.

5.9 Alternative build process with latexmk

This section is on running the build process of LATEX main files with latexmk
or equivalent. Currently, that way only PDF files can be created. Although the
functionality is readily explained, the intention is not so obvious: In Section 3.6.2
describes the role of latexmk as a build tool in the course of document development,
whereas this LATEX builder is for final, quality checked build. So the two tools seem
to be complementary. Section 3.5.1 describes that this LATEX builder can write
its own configuration as a config file .latexmkrc for latexmk so that builds with
latexmk are in line with final builds by this LATEX builder itself internally.

So running latexmk from within this LATEX builder seems superfluous at first
sight. A closer look onto .latexmkrc unveils that this is just a Perl script which
is very flexible realizing new or special functionality, whereas this LATEX builder
is tied to a quite rigid configuration in the pom. So, for example if for building a
document tools are needed which are not supported by this LATEX builder, their
invocation can be implemented directly in .latexmkrc. Since this LATEX builder
writes a single .latexmkrc in the root directory texSrcDirectory, which must
be made available in each subfolder by adding a link, the config .latexmkrc by
this LATEX builder may be replaced by a hand-crafted config file for each folder
separately.

Another advantage being able to run latexmk from within this builder: It is
conceivable, that the artifacts created in the course of document development using
latexmk cannot be reproduced by this builder. Most likely because .latexmkrc

5.9. ALTERNATIVE BUILD PROCESS WITH LATEXMK 111

does not reimplement the internal functionality properly. Invoking latexmk in a
final build reduces this risk to a minimum.

Further motivations for integrating latexmk in this builder, in particular for
individual files: there are cases where the build process of latexmk works, but not
the internal build process of this builder. Integrating latexmk offers the strengths
of latexmk. Note that there are also cases where the built-in build process of this
builder is mightier than that of latexmk. Another reason for integrating latexmk
here, is the use case of source distribution: The document(s) may be passed to
someone as the source, not as a target, like PDF. It is not clear that the “customer”
uses this latex builder, but maybe (s)he uses latexmk. In this case it makes sense
to check, whether the document can be built with latexmk alone.

Having explained this, the question arises why this LATEX builder does not in
general rely on latexmk and invokes LATEX engines and other converters directly.
One reason is that LATEX builder does not only invoke converters, it also checks
return values and, depending on the converter, log files emitting errors and warnings
if appropriate. So, delegating to latexmk the user can no longer check that the
build process passed without warning or error. A second aspect is, that the build
algorithms differ: latexmk runs the LATEX main file then detecting which files
are missing and then tries to build these based on rules. The basic idea behind
is “backward discovery” of dependencies, whereas this LATEX builder first builds
the graphic files globally (latexmk detects last) before for each LATEX main file
is compiled. So this LATEX builder combines “forward discovery” and backwards
discovery. Pure backward discovery is more elegant but as the LATEX compiler stops
at each graphic file not present before creating it and rerunning compilation of the
LATEX main file, it may result in excessive reruns of the LATEX engine if there are
many created graphics in the document.

So there are strong reasons to avoid latexmk, but there are also reasons to
allow in special cases. The parameter $latexmkUsage described in Table 6.1 on
page 126 allows gradually use of latexmk, not at all, fully or as backend where
latexmk is invoked after graphic files have been created with an internal process.
As a rule, latexmk shall be used as much as required and as little as possible.

This shows also, that it is a good thing to be able to activate latexmk in
individual LATEX main files which is realized with the magic comment latexmk.
It can take the form latexmk=false, latexmk=true or just latexmk which is the
short form of the latter. Magic comments are described in Section 3.1.1.2. In
general, they overwrite settings. Here, the situation is a bit more complicated.
Whereas $latexmkUsage allows three levels of usage, the magic comment can
choose to use latexmk or not. If latexmk shall be used due to the magic comment,
then it is used to compile the TEX file in any case, but it compiles graphic files
only, if $latexmkUsage takes the value NotAtAll. If latexmk shall not be used

112 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

due to the magic comment, then it will never compile the TEX file itself, and if
$latexmkUsage takes the value Fully, all required graphic files must be compiled
for some reason, e.g. there is none to be compiled.

By the way, invoking latexmk from within this software is the same as invoking
manually. Both are based on .latexmkrc. The features supported are described
in Section!3.5.1. Among those are the supported targets, reading magic comments
independently from internal implementations and support for reproducibility checks.

5.10 Creating hypertext
To create HTML and XHTML from TEX files (more precise from LATEX files), a
tex4htCommand-command is used Together with its parameters, it is described in
Section!6.10. This may be htlatex, the default based on latex and htxelatex
based on xelatex.

Figure 5.9 shows the steps htlatex performs: From the input LATEX file xxx.tex
another LATEX file yyy.tex is created which arises from xxx.tex by adding
\ usepackage [. . .] { tex 4ht } .
Then htlatex runs latex on yyy.tex which results in yyy.dvi. Note that this
is in contrast to lualatex which would create some yyy.pdf unless otherwise
specified.

Then comes the converter tex4ht into the game which creates several html
files among those also xxx.html. The other files, yyy.idv and yyy.lg, are further
processed by t4ht creating the stylesheet xxx.css and graphic files.

Let us make this more precise. The output of latex is a standard DVI file
interleaved with special instructions for the post-processor tex4ht to use. Note
that tex4ht is the name both of the post-processor and of the LATEX-package. The
special instructions come from implicit and explicit requests made in the source
file through commands for TeX4ht.

The utility tex4ht translates the dvi-code into standard text, while obeying
the requests it gets from the special instructions. The special instructions may
request the creation of files, insertion of html code, filtering of pictures, and so
forth. In the extreme case that the source code contains no commands of TeX4ht,
tex4ht gets pure dvi-code and it outputs (almost) plain text with no hypertext
elements in it.

The special (\special) instructions seeded in the dvi-code are not understood
by dvi processors other than those of TeX4ht.

t4ht This is an interpreter for executing the requests made in the xxx.lg script.
xxx.idv This is a dvi file extracted from xxx.dvi, and it contains the pictures

needed in the html files.

5.10. CREATING HYPERTEXT 113

xxx.lg This is a log file listing the pictures of xxx.idv, the PNG files that
should be created, CSS information, and user directives introduced through the
“\Needs” command.

xxx.tex

yyy.tex

yyy.dvi

....html

picture files
e.g. png files

xxx.css

inclusion of
\usepackage[...]{tex4ht}

latex

tex4ht

t4ht

yyy.lg

yyy.idv

Figure 5.9: Conversion of a TEX file into an xml file

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/tex4ht.4ht
version 2009-01-07-07:11

Note --- for additional information, use the command line option `info'

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note: to remove the <?xml version=...?> processing instruction
use the command line option `no-VERSION'

Note: to remove the DOCTYPE declaration
use the command line option `no-DOCTYPE'
)

Note: for marking of the base font, use the command line option `fonts+'
Note: for non active _, use the command line option `no_'
Note: for _ of catcode 13, use the command line option `_13'
Note: for non active ^, use the command line option `no^'
Note: for ^ of catcode 13, use the command line option `^13'

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note: For section filenames that reflect on their titles
use the command line option `sec filename'

Note: for alternative charset, use the command line option `charset=...'

Note: to ignore CSS font decoration, use the `NoFonts' command line option

Note: for jpg bitmaps of pictures,
use the `jpg' command line option.
(Character bitmaps are controled only by `g'
records of tex4ht.env and `-g' switches of tex4ht.c)

114 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

Note: for gif bitmaps of pictures, use the `gif' command line option.
(Character bitmaps are controled only by `g'
records of tex4ht.env and `-g' switches of tex4ht.c)

Note: for content and toc in 2 frames,
use the command line option `frames'

Note: for content, toc, and footnotes in 3 frames,
use the command line option `frames-fn'

Note --- for file extension name xht, use the command line option `xht'

TeX4ht package options: xhtml,uni-html4,2,pic-tabular,html

Note: to ignore CSS code, use the command line option `-css

Note: for inline CSS code, use the command line option `css-in'

Note: for pop ups on mouse over, use the command line option `mouseover'

Note: for addressing images in a subdirectory,
use the command line option `imgdir:.../'
)

Note --- for back links to toc, use the command line option `sections+'

Note --- for linear crosslinks of pages, use the command line option `next'

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/latex.4ht
version 2009-05-21-09:32

Note --- for links into captions, instead of float heads, use the command l
ine option `refcaption'

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note --- For mini tocs immediately aftter the header
use the command line option `minitoc<'

Note --- for enumerated list elements with valued data,
use the command line option `enumerate+'

Note --- for enumerated list elements li's with value attributes, use the c
ommand line option `enumerate-'

Note --- for CSS2 code, use the command line option `css2'

Note --- for bitmap fbox'es, use the command line option `pic-fbox'

Note --- for bitmap framebox'es, use the command line option `pic-framebox'

Note --- for inline footnotes use command line option `fn-in'

Note --- for tracing of latex font commands,
use the command line option `fonts'

Note --- for width specifications of tabular p entries,
use the `p-width' command line option
or a configuration similar to
\Configure{HColWidth}{\HCode{style="width:\HColWidth"}}

)
(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4-math.4ht
version 2009-05-18-23:01

Note --- for pictorial eqnarray, use the command line option `pic-eqnarray'

Note --- for pictorial array, use the command line option `pic-array'

Note --- for pictorial $...$ environments,
use the command line option `pic-m' (not recommended!!)

Note --- for pictorial $...$ and $$...$$ environments with latex alt,
use the command line option `pic-m+' (not safe!!)

Note --- for pictorial array, use the command line option `pic-array'
)
(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/unicode.4ht
version 2010-12-18-17:40
)
(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4-uni.4ht))

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

5.10. CREATING HYPERTEXT 115

Note --- for tocs without * entries, use command line option `notoc*'

Note --- for tocs without * entries, use command line option `notoc*'

Note --- to eliminate mini tables of contents,
use the command line option `nominitoc'

Note --- for frames-like object-based table of contents,
use the command line option `obj-toc'

Note --- for files named derived from section titles,
use the command line option `sec filename'

Note --- for i-columns index,
use the command line option `index=i' (e.g., index=2)

)

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note --- if included graphics are of degraded quality,
try the command line options `graphics-num' or `graphics-'.
The `num' should provide the density of pixels in the bitmaps (e.g., 110).

Note --- for key dimensions try the option `Gin-dim';
for key dimensions when bounding box is unavailable
try `Gin-dim+'; neither is recommended
)

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht
Note --- for URL encoding within href use the command line option `url-enc'
)

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note --- for pictorial longtable,
use the command line option `pic-longtable'
)

(/usr/local/texlive/2014/texmf-dist/tex/generic/tex4ht/html4.4ht

Note --- to ensure proper alignments use fixed size fonts (see listings.dtx
)
)

tex4ht yields

tex4ht.c (2012-07-25-19:36 kpathsea)
tex4ht
--- error --- improper command line
tex4ht [-f<path-separator-ch>]in file[.dvi]

[-.<ext>] replacement to default file extension name .dvi
[-c<tag name>] choose named segment in env file
[-e<env file>]
[-f<path-separator-ch>] remove path from the file name
[-F<ch-code>] replacement for missing font characters; 0--255; default 0
[-g<bitmap file-ext>]
[-h(e|f|F|g|s|v|V)] trace: e-errors/warnings, f-htf, F-htf search

g-groups, s-specials, v-env, V-env search
[-i<htf-font-dir>]
[-l<bookkeeping file>]
[-P(*|<filter>)] permission for system calls: *-always, filter
[-S<image-script>]
[-s<css file-ext>] default: -s4cs; multiple entries allowed
[-t<tfm-font-dir>]
[-u10] base 10 for unicode characters
[-utf8] utf-8 encoding for unicode characters
[-v<idv version>] replacement for the given dvi version
[-xs] ms-dos file names for automatically generated gifs

t4ht yields

116 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

--
t4ht [-f<dir char>]filename ...
-b ignore -d -m -M for bitmaps
-c... choose named segment in env file
-d... directory for output files (default: current)
-e... location of tex4ht.env
-i debugging info
-g ignore errors in system calls
-m... chmod ... of new output files (reused bitmaps excluded)
-p don't convert pictures (default: convert)
-r replace bitmaps of all glyphs (default: reuse old ones)
-M... chmod ... of all output files
-Q quit, if tex4ht.c had problems
-S... permission for system calls: *-always, filter
-X... content for field %%3 in X scripts
-.... content for field %%2 in . scripts

Example:
t4ht name -d/WWW/temp/ -etex4ht-32.env -m644

--

5.11 Creating odt files

5.12 Creating MS word files
The best way to convert LATEX files into MS word files is via ODT files. Conversion
from LATEX to odt is already described in Section 5.11. The last step can be done
by odt2doc which can create both doc-format and docx-format and many others
which is illustrated in Figure 5.10.

xxx.tex

htlatex

xxx.odt

odt2doc

xxx.docx

Figure 5.10: Conversion of a TEX file into a docx file

5.13 Creating plain text files
Why should one create plain text from LATEX files? Maybe this is the minimal
format the receiver can work with. Another common application is word-count, in
particular if writing a paper for a journal.

Plain text files can be created from LATEX files just by stripping off the tex-
commands. The disadvantage is, that references, bibliography, index, glossary,

5.13. CREATING PLAIN TEXT FILES 117

table of contents, list of figures, list of tables, …and symbols get lost. Thus, the
first step we take is complete creation of a PDF file except display of warnings
like bad boxes as described in Section 5.1. This creates an appropriate pdf file,
with correct numbering and links, possibly with overfull boxes and that like. As
a final step, we convert the pdf file into a text file using, as a default pdftotext
with ending txt. Figure 5.11 illustrates the translation process.

xxx.tex

pdflatex

xxx.pdf

pdftotext

xxx.txt

Figure 5.11: Conversion of a TEX file into a txt file

Note that pdftotext produces a text file with page numbers and signifies
the end of a page (to see how, just have a look at the end of the file), so that
one can identify page numbers as such. Thus references, index, glossary, table
of contents and that like referring to page numbers carry valuable information.
Also symbols available in utf8 encoding are preserved. In contrast, heavily stacked
formulae become unreadable, because pdftotext displays them line by line and
drops fraction bars completely. Also, formulae with complex subformulae in a root
operator become unreadable because the root operator becomes just a root symbol.
Likewise for integrals and that like.

Aspects of figures kept are the captions of course but also the LATEX-texts. This
is displayed line-wise. What gets lost is the postscript/pdf-parts, i.e. the plain
graphics.

118 CHAPTER 5. PROCESSING OF LATEX MAIN FILES

Chapter 6

Parameters resp. Settings

This section describes the parameters of both the ant-task and the maven-plugin.
There are also general aspects, treated in Section 6.1. As this software mainly acts
by invoking other converter and checker, most parameters refer to commands and
options for invocations, but there are also parameters which cannot be associated
to an individual invocation. Parameters referring to the conversion process or to
checking as a whole are collected in Section 6.2. A special case is Section 6.3 which
collects the parameters for goals vrs and inj. All the other sections refer to one
or more converters.

The parameters are listed in Tables 6.1 through 6.13 with names, default values
and short explanations. Note that neither of the parameters is mandatory, as there
are always valid default values.

Each of the tables is described in a separate section, only the tables 6.8 and 6.9 for
pythontex and for depythontex, respectively, are collected in the single Section 5.5.

Table 6.1 shows parameters controlling the general conversion process described
in detail in Section 6.2. These are directories with names xxxDirectory and further
parameters not following a naming convention. The other tables show parameters
after a certain naming scheme: Command names have the form xxxCommand and
the parameter with the according options have the form xxxOptions. Here xxx
represents a certain converter. This is one of

fig2dev The converter of fig-files into mixed latex- and PDF-files.

gnuplot The converter of gnuplot-files into mixed latex- and PDF-files.

metapost The converter of MetaPost-files into mixed latex- and PDF-files.

latex2pdf The converter of latex-files into PDF-files.

bibtex The creator of a bibliography from an aux-file.

119

120 CHAPTER 6. PARAMETERS RESP. SETTINGS

makeindex The makeindex utility creating an index.

makeglossaries The makeglossaries utility creating a glossary.

pythontex The utility to invoke python and other languages from within LATEX and to
replace the code by its results dynamically.

depythontex The utility to replace code finally after a run of pythontex.

tex4ht The converter of latex into HTML and also into ODT, depending on the
parameters.

latex2rtf The converter of latex-files into RTF-files.

odt2doc The converter of ODT-files into doc(x)-files.

pdf2txt The converter of PDF-files into TXT-files.

chktex A code-checker converting in a sense a LATEX main file into a log-file containing
errors, warnings and further messages.

diffPdf A diff tool comparing the PDF file created with an expected PDF file. This is
relevant only if a PDF file has been created and if the comparison is activated,
which is not true by default.

It is a little more complicated with the parameters in Section 6.10.
The command name and the list of options describes the invocation of the

command. This LATEX builder supervises also the return value frequently and the
log file is supervised.

There are some parameters of the form patternXxxYyy, referring to a pattern
in the log-file of the converter Xxx indicating an event Yyy which is one of the
following:

ReRun indicates that Xxx needs to be rerun.

Err indicates that Xxx had an error.

Warn indicates that Xxx had a warning.

Besides the abovementioned patterns, describing events in log files, there are
further patterns. The maybe the most prominent one, patternLatexMainFile, is
devoted a separate section, Section 6.2.1. All patterns, i.e. all parameters of the form
patternZZZ are interpreted as regular expressions in a variant slightly generalizing
the default implementation for java. We owe description and implementation to
Florian Ingerl.

https://github.com/florianingerl/com.florianingerl.util.regex

6.1. GENERALITIES ON PARAMETERS 121

Essentially, there are two kinds of parameters: Most are just passed to the
converters invoked by this software. The parameters of this software are so that
the choice of the converter, i.e. the name of the application can be configured, and
also each converter can be almost freely configured.

Parameters not passed to an application, are either really crucial or are included
to allow also development of latex files.

6.1 Generalities on parameters
As pointed out in the introduction of this chapter, this software acts mainly by
invoking various converters. The converters are grouped in so-called categories.
The converters of a category have the same (file-)interface, means read and write
the same files and, mostly but not strictly necessarily, have the same options.
For each category there is an option xxxCommand, where xxx is the name of the
category in lowercase letters1. The value of the option is the command to invoke
the converter of the category. Also, there is a default converter in each category,
and sometimes there is just a single converter possible. For example, lualatex is
the default converter in the category latex.

This software knows about converters and registers the ones approved for this
software. Among the advantages are, that it is ensured that the converter is really
in that category and that this software checks whether a converter used is in the
right category, and it checks whether it is installed in an approved version. On the
other hand, there are cases, where the user needs to invoke a custom converter. In
this case, the command name shall be given in the form

<categoryCommand>commandName:category</categoryCommand>

to make sure, that the user is really aware that the converter (s)he uses is in the
correct category, i.e. has the required interface. Since neither of the registered
converters has a : in its name, This form is identified by the occurrence of a colon.
Since the categories neither have colons in their names, separation of command
name and category is by the last colon occurring. That way, command names may
contain colons also.

For most categories of converters, in fact at the time of this writing with a
single exception, one can specify command line options, specified in the form

<categoryOptions></categoryOptions>

In fact, only for diffPdfCommand there is no option at all, and for some converters
with more complex options, the options are split over more than one setting, e.g.

1In fact there are exceptions to this rule: E.g. for category LaTeX the command is called
latex2pdf referring to the common output format PDF, although also DVI and XDV are possible

122 CHAPTER 6. PARAMETERS RESP. SETTINGS

for converter category fig2dev converting FIG-files, there are general settings
given by fig2devGenOptions and settings specific for the output language: LATEX
(fig2devPtxOptions) and EPS (fig2devPdfEpsOptions. In any case, options are
trimmed, i.e. leading and trailing white spaces are removed before being processed.
There are cases, where the options as given are not directly passed to the converter
but is further processed. In this case, the processing is documented.

6.2 General parameters
This section describes the general parameters given in Table 6.1.

Parameter Default
Explanation
texSrcDirectory src/site/tex
The latex source directory as a string relative to $baseDirectory, containing
$texSrcProcDirectory. This directory determines also the subdirectory of
$outputDirectory to lay down the generated artifacts. The default value is
“src/site/tex” on Unix systems.
texSrcProcDirectory .
The latex source processing directory as a string relative to $texSrcDirectory
containing all tex main documents and the graphic files to be processed and
also to be cleaned. Whether this is done recursively in sub-folders is specified
by $readTexSrcProcDirRec. The default value is “.”.
readTexSrcProcDirRec true
Whether the tex source directory $texSrcProcDirectory shall be read recur-
sively for creation of graphic files, i.e. including the sub-directories recursively.
This is set to false only during development of documentation.
outputDirectory .
The generated artifacts will be copied to outputDirectory relative to
$targetSiteDirectory which is by default ’$targetDirectory/site’ on
Unix systems.
targets chk, pdf, html

6.2. GENERAL PARAMETERS 123

A comma separated list of targets without blanks to be stored in $targetSet.
Allowed values are chk, dvi, pdf, html, odt, docx, rtf and txt.
The targets are mostly related to output formats. One exception is chk which
represents a check, i.e. linting of the source.
While in general target dvi represents creation of output in DVI format, if
$latex2pdfCommand is set to xelatex, the target dvi yields an output in
extended DVI format, i.e. in XDV. Also target html may represent creation of
HTML files and of XHMTL files. Analogously docx corresponds with DOCX
format by default, but can also be configured to mean DOC.
Independent of the order given, the given targets are created in an internal
ordering.
CAUTION: These targets are the default targets for any LATEX main file, but
depending on the document class, there may be further restrictions given by
setting ’$docClassesToTargets’. Currently, only the class beamer used for
presentations has restrictions. Moreover, these targets may be overwritten for
individual LATEX main files using magic comments as described in Section 3.1.1.1.
convertersExcluded empty
A comma separated list of excluded Converters given by their command.
Excluded converters need not be installed, but their names must be known.
They don’t show up in the version check of target vrs and of course they are
not allowed to be used.
patternLatexMainFile see Section 6.2.1
The pattern to be applied to the beginning of the contents of TEX-files which
identifies a LATEX main file, i.e. a file to be compiled. If the file is really a LATEX
main file, the pattern contributes to finding the targets for compilation. This
may be done either directly via a magic comment or via the document class.
The default value for the pattern is chosen to match quite exactly the start of
the LATEX main files. Here we assume that the LATEX main file should contain
the declaration “\documentclass” or the old-fashioned “\documentstyle”
preceded by a few constructs and followed by the document class. Among the
few constructs are also comments and in particular magic comments.
Strictly speaking, a tight match is not necessary, only separation of LATEX main
files from other files is and so is extraction of the document class. For a more
thorough discussion, and for an alternative approach, consult the manual.
Since the pattern is chosen according to documentation collected from the
internet, one can never be sure whether the pattern is perfect.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency. In
any case, matching of the group named class must be retained so that the
document class is matched.
docClassesToTargets see description below

124 CHAPTER 6. PARAMETERS RESP. SETTINGS

Assigns to document classes their allowed ‘targets’. The map expression is a
list of chunks separated by a single blank. Each chunk is divided by a single
colon in a comma separated list of document classes, and a comma separated
list of targets.
A chunk means that all given document classes are compiled for the given
targets. Thus, the set of document classes may not be empty, i.e. the colon
may not be at the first place of its chunk. In contrast, a colon at the last place
of a chunk indicates an empty target set, meaning that documents of the given
class are not processed at all.
The document classes of the chunks may not overlap. A document of a class is
compiled for a target if this is specified so by a chunk.
As a side effect, compilation of document classes cause warnings if not registered
here. The default value consists of two chunks:

• ‘article,report,book,minimal:chk,dvi,pdf,html,odt,docx,rtf,txt’
ensures that article and book and others allow all targets.

• ‘beamer,leaflet,scrlttr2:chk,pdf,txt’ beamer allows mainly pdf and
derived from that txt. Checking with chk does not depend on the document
class. Note that maybe leaflets or letters may work for DVI or XDV also, even
for word formats and related, we restrict ourselves to the given output for
simplification.

CAUTION: Due to a bug in maven, setting this to the empty string is ignored.
CAUTION: This setting is ignored, if targets are specified for individual LATEX
main files using magic comments as described in Section 3.1.1.2.
mainFilesIncluded empty string
The list of names of LATEX main files without extension .tex separated by
whitespace which shall be included for creating targets, except if this is empty
in which cases all are included. It is assumed that the names of the LATEX main
files do not contain whitespace. Note that leading and trailing whitespace are
trimmed. Currently, names of LATEX main files should better have pairwise
different names, even if in different directories. The empty string is the default,
i.e. including all. See parameter mainFilesExcluded.
mainFilesExcluded empty string

https://issues.apache.org/jira/projects/MNG/issues/MNG-7927?filter=reportedbyme

6.2. GENERAL PARAMETERS 125

The list of names of LATEX main files without extension .tex separated by
whitespace which shall be excluded for creating targets. It is assumed that the
names of the LATEX main files do not contain whitespace. Note that leading and
trailing whitespace are trimmed. Currently, names of LATEX main files should
better have pairwise different names, even if in different directories. Together
with mainFilesExcluded, this is used for document development to build the
PDF-files of a subset of documents and e.g. because for a site one needs all
documents, but with the software only the manual is shipped. The empty
string is the default, i.e. excluding no file. See parameter mainFilesIncluded.
latexmkUsage NotAtAll
The extent to which latexmk or to be more precise, the command given by
latexmkCommand is used to build. The following values for build strategy are
allowed:

NotAtAll latexmk is not used at all.

AsBackend latexmk is used as backend, i.e. graphic files are created as
for goal grp as in strategy NotAtAll before latexmk is invoked on the
individual LATEX main files.

Fully build is by applying latexmk on the individual LATEX main files without
any prior actions.

This setting can be overwritten for individual LATEX main files by the magic
comment latexmkMagic described in Section 6.2.1.
For a more detailed description of usage of latexmk see Section 5.9.
texPath empty string
Path to the TeX scripts or null. In the latter case, the scripts must be on
the system path. Note that in the pom, <texPath/> and even <texPath>
</texPath> represent the null-File. The default value is null.
cleanUp true
Clean up the working directory in the end? May be used for debugging when
setting false.
patternCreatedFromLatexMain see Section 6.2.2

126 CHAPTER 6. PARAMETERS RESP. SETTINGS

This pattern is applied to file names and matching shall accept all the files
which were created from a LATEX main file ‘xxx.tex’. It is neither applied to
directories nor to ‘xxx.tex’ itself. It shall comprise neither graphic files to be
processed nor files created from those graphic files.
This pattern is applied in the course of processing graphic files to decide which
graphic files should be processed (those rejected by this pattern) and to log
warnings if there is a risk, that graphic files to be processed are skipped or that
processing a LATEX main file overwrites the result of graphic preprocessing.
When clearing the LATEX source processing directory $texSrcProcDirectory,
i.e. all generated files should be removed, first those created from LATEX main
files. As an approximation, those are removed which match this pattern.
The sequence ‘T$T’ is replaced by the prefix ‘xxx’. The sequence ‘T$T’ must
always be replaced: The symbol ‘$’ occurs as end-sign as ‘)$’ or as literal
symbol as ‘$’. Thus, ‘T$T’ is no regular occurrence and must always be replaced
with ‘xxx’.
Spaces and newlines are removed from that pattern before matching.
This pattern may never be ensured to be complete, because any package may
create files with names matching its own patterns and so any new package may
break completeness. Nevertheless, the default value aims completeness while
be tight enough not to match names of files not created.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.

Table 6.1: General parameters

6.2.1 The parameter patternLatexMainFile

Before reading the details given in this section, the user is advised to at least skim
through Section 3.1.1 and 3.2 for intuitive understanding.

The regular expression pattern patternLatexMainFile matches exactly the
files to be compiled, the so called LATEX main files, and for LATEX main files it
extracts the following pieces of information, all by named capturing groups which
have the form (!<name>pattern) but in the pom < and > must be escaped and so
capturing groups take the form (!<name>pattern). The capturing group
named docClass extracts the document class from the command \documentclass.
If patternLatexMainFile matches, also the capturing group docClass matches, so
that for LATEX main files the document class is always known. All other capturing
groups are defined though magic comments. As the document class, they are
directives specific to the given file on how to compile it. They override the general
settings given in the pom. A magic comment may not match, which means that
there is no according specific directive and so the general setting holds.

6.2. GENERAL PARAMETERS 127

Whether a capturing group must match or not, the regular expression pattern
patternLatexMainFilemust contain each of the following named capturing groups,
because the software asks for it. Distinguish between the pattern and the matching
strings: Whereas in the pattern all groups must be mentioned, a string may match
without matching the group. Whereas docClass is mandatory, i.e. the according
group matches, the magic comments are all optional, i.e. they need not match any
part of the string.

docClass the document class given by the command \documentclass.

programMagic the LATEX engine to be used specifically for the according doc-
ument. This is intended to be specified only if the required engine for
the given document deviates from what is specified globally as setting
latex2pdfCommand described in Table 6.4 on page 138.

targetsMagic the targets to be built. This is intended to be specified only if
the targets for the given document deviate from what is specified globally
as setting targets and docClassesToTargets, both given in Table 6.1 on
page 126.

latexmkMagic, latexmkMagicVal whether for creating PDF files latexmk
shall be used. This is intended to run the build process with latexmk
although the global setting latexmkUsage given in Table 6.1 on page 126
may specify direct compilation without latexmk.
The magic comment can take the form % !LMP latexmkMagic=<bool> or %
!LMP latexmkMagic which is just short for % !LMP latexmkMagic=true.

chkDiffMagic, chkDiffMagicVal whether the created PDF file shall be checked
against an original ensuring that it is correctly reproduced. This is intended
to control a check specific for this file overwriting the general setting chkDiff
given in Table 6.13 on page 154.
The magic comment can take the form % !LMP chkDiff=<bool> or % !LMP
chkDiff which is just short for % !LMP chkDiff=true.

The default pattern for identifying LATEX main files and to extract the above
pieces of information is given by Listing 6.1.

1 \A
2 (%\s ∗!\ s∗T[eE]X (TXS| spe l l check | encoding | root) .∗\R)∗
3 (%\s ∗!\ s∗T[eE]X program\s∗=\s∗(?& l t ; programMagic> ; [^ }]+)\R) ?
4 (%\s ∗!\ s∗T[eE]X .∗\R)∗
5 (%\s ∗!\ s∗LMP (?& l t ; chkDiffMagic> ; chkDiff)(=(?& l t ; chkDiffMagicVal> ; true | f a l s e)) ?\R) ?
6 (%\s ∗!\ s∗LMP (?& l t ; latexmkMagic> ; latexmk)(=(?& l t ; latexmkMagicVal> ; true | f a l s e)) ?\R) ?
7 (%\s ∗!\ s∗LMP targets=(?&l t ; targetsMagic> ; (\ p{Lower } | ,)+)\R) ?
8 (\ s ∗(

128 CHAPTER 6. PARAMETERS RESP. SETTINGS

9 \\RequirePackage\s ∗(\ [(\ s |\w| [, =]) ∗\]) ?\ s ∗\{(\w|−)+\}\s ∗(\ [(\d | [− ./]) +\]) ? |
10 \\PassOptionsToPackage\s ∗\{(\ s |\w| [, =]) ∗\}\ s ∗\{(\w|−)+\}|
11 \\newbool\s ∗\{\w+\}|
12 \\ setbool \s ∗\{\w+\}\{(true | f a l s e) \}|
13 \\DocumentMetadata(?& l t ; brace> ;\{(? : [^ { }] | (? ' brace ')) ∗\}) |
14 \\ input\s ∗\{[^{}]∗\}
15) ?\ s ∗(%.∗)?\R)∗
16 \\(documentstyle | documentclass)\s ∗ (\ [[^]] ∗ \]) ?\ s∗\{(?& l t ; docClass> ; [^ }]+)\}

Listing 6.1: The default pattern of the LATEX main file in a form as in a pom
configuration

Let us trace through line by line:

1 The \A indicates the start of the file.

2–4 These lines match magic comments % !TEX, which are used by other build
tools also. Line 3 extracts programMagic from the first magic comment of
the form % !TEX program=…. This is the behavior of the other tools also.
The other lines are to skip information from magic comments % !TEX which
are not needed.

5–7 These lines match magic comments of the form % !LMP… which are specific
for this software. Like the above magic comments they are all optional, but
their ordering is fixed:

chkDiffMagic to activate diffing to check reproduction, or in conjunction
with chkDiffMagicVal to switch reproduction check.

latexmkMagic to delegate build to latexmk.
targetsMagic allows to specify a list of targets. This is the sole of these

magic comments not only applying to creating PDF files.

8–11 This defines material which may precede the command \documentclass,
except for magic comments and is the only one without magic comments.
Besides lines with specific commands, it matches empty lines and comment
lines. Also, a line may start with whitespace and may contain a command
and end in a comment. The commands specified there may occur in arbitrary
multiplicity and order. This section is likely to be modified by the user.

11 Matches the command \documentclass and extracts docClass.

Between magic comments and \documentclass or \documentstyle only the
following material is allowed:

• the command \RequirePackage specifying packages to be loaded before
\documentclass, in contrast to \usepackage which is used after,

6.2. GENERAL PARAMETERS 129

• the command \PassOptionsToPackage allowing to pass one or more options
to a package, although including with \usepackage is without options,

• \newbool and \setbool to define and set a boolean value defining variants
(preceeded by \RequirePackage{etoolbox}),

• the command \DocumentMetadata allowing arbitrarily nested braces,

• the command \input, and

• whitespace, empty lines, comment lines even magic comments, although for
this tool they are ignored.

This may be too restrictive and here is the point, where the use has freedom to
change the pattern. On the other hand, \input offers a quick workaround to add
material if a user is not familiar with regular expressions.

In the long run it must be thought of weakening the pattern: It is not necessary,
that exactly the correct files are parsed, because incorrect files are detected by the
LATEX engine anyway. Instead, among the correct files the LATEX main files shall be
detected.

As a workaround for very special LATEX main files, it is a good idea to let it
indicate in a magic comment. Then the pattern as a whole must match, even not
matching a \documentclass. From the point of view of this software, it makes
sense to specify the document type in the magic comment then. Thinking one
step further, also specifying the target or the LATEX engine in a magic comment
indicates already a LATEX main file. Whereas the target set makes the document
class superfluous, this is not the case for the magic comment specifying the LATEX
engine.

The LATEX extension LATEX workshop for VS Code offers two similar alternatives
to identify LATEX main files: Occurrence of \documentclass without checking
preceding material and absence of first line % !TEX root= declaring a TEX file as
depending on a LATEX main file which must be given explicitly. The first alternative
risks that a TEX file is recognized as main file, just because it deals with document
classes, whereas the second alternative is inconvenient and does not work if a file has
two potential LATEX main files as is suggested for beamer presentations in Section 3.1
and realized in [Rei23a]. Although presence of % !TEX root= indicates that the
according file is no LATEX main file, this software ignores this magic comment.

Emacs with package AUCTEX, uses an alternative to the current technique to
determine the LATEX main files: LATEX main files are marked with an end section as
this file:

%%% Local Variables:
%%% mode: latex

https://github.com/James-Yu/LaTeX-Workshop/wiki/Compile#multi-file-projects
https://github.com/James-Yu/LaTeX-Workshop/wiki/Compile#multi-file-projects

130 CHAPTER 6. PARAMETERS RESP. SETTINGS

%%% TeX-command-extra-options: "-recorder -shell-escape"
%%% TeX-master: t
%%% End:

The vital line in this context is %%% TeX-master: t. In contrast to this, a non-
master file either has no end-section at all or has an end section declaring the
according master file (if it is unique) explicitly as the following one from header.tex:

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "manualLMP"
%%% End:

Unlike the document class to be extracted from \documentclass and unlike
other magic comments to be taken into account, those of AUCTEX are at the end
of the file.

Although the author considers this approach charming, this software ignores
AUCTEX-style magic comments, since otherwise the whole file is to be parsed.
Sticking to regular expressions, the parsing engine must then keep the whole file in
memory. All this would push down performance.

6.2.2 The parameter patternCreatedFromLatexMain

The files created from a LATEX main file depend strongly on the compiler options
and on packages used in the LATEX main file and in the TEX-files inputted. The
default value ‘^T$T\.[^.]∗’ is appropriate for most parameters and packages: Most
packages create files with names only which coincide with the name of the LATEX
main file, except the suffix. This is all sufficient even for programs doing post-
processing such as bibtex, makeindex, xindy and makeglossaries.

The program splitindex requires in addition ‘^T$T-.+\.(idx|ind|ilg)’.
The utility pythontex requires ‘^T$Tḋepytx(\.tex)?’ and creates a bunch of

further files all in a folder of the form ‘pythontex-files-T$T’ which must also be
added to the regular expression.

Whereas typically latexmk creates only ‘^T$Tḟdb_latexmk’ which is included in
the very first expression, during its run it creates ‘^(pdf|xe|lua)?latex\d+\.fls’,
where the digits represent the process number. If interrupting latexmk, these files
may remain, so it is appropriate to add them to the regular expression.

Package ‘srcltx’ or also synctex requires in addition ‘^T$T\.synctex(\.gz)?’
depending on the setting synctex=1 or synctex=-1. For long files the synctex
may create a busy file ‘^T$T\.synctex\(busy\)?’. Even if the LATEX process is
interrupted regularly, at the end the busy file is erased, but still if interrupted from
outside it may remain, so we add also the busy variant to the regular expression.

6.3. PARAMETERS FOR GOALS VRS AND INJ 131

Strictly speaking, ‘^T$T\.synctex(\(busy\))?(\.gz)?’ is not precisely what
may occur, but is a good approximation.

The class beamer creates a lot of additional files but finally in addition to
what we already have, it needs an additional ^T$T\.run\.xml and at times
^T$T\.\d+\.vrb.

Finally, package ‘tex4ht’ is for all the rest of the cases, created by packages.
The pattern is designed to match quite exactly the created files, not much

more and at any case not less. In particular, it has to comprise the files matching
pattern $patternT4htOutputFiles. Nevertheless, since any new package may
break the pattern, and not every package is well documented, this pattern cannot
be guaranteed to be final.

If the current default value is not appropriate, please overwrite it in the config-
uration and notify the developer of this plugin of the deficiency.

The default value for this pattern is currently:

^(
T$T (\.([^.]*|

synctex(\(busy\))?(\.gz)?|
out\.ps|run\.xml|\d+\.vrb|
depytx(\.tex)?)|

(-|ch|se|su|ap|li)?\d+\.x?html?|
\d+x\.x?bb|

\d+x?\.png|
-\d+\.svg|
-.+\.(idx|ind|ilg))|

pythontex-files-T$T|
zzT$T\.e?ps|
(cmsy)\d+(-c)?-\d+c?\.png|
(pdf|xe|lua)?latex\d+\.fls)$

6.3 Parameters for goals vrs and inj
This section describes the parameters for the goals vrs and inj given in Table 6.2.
As illustrated in Listing 2.4 of the part of the pom referring to this plugin, in
general parameters are configured in a settings element contained in a general
configuration element. In contrast to this, the parameters for the goals vrs and
inj are given in configurations within executions specific for these goals.

132 CHAPTER 6. PARAMETERS RESP. SETTINGS

Parameter Default
Explanation
versionsWarnOnly false
Indicates whether the goal vrs displays warnings only or also creates pieces of
info. Info refers to the version of this plugin and also on its git commit, but
also on the versions of the converters found and lists the converters excluded,
i.e. those not used and thus not tested on version.
Warnings are emitted e.g. if the version of a converter does not fit the expecta-
tions, the version of a converter could not be retrieved, e.g. because it is not
installed or if the converter specified is unknown altogether. This defaults to
false displaying also info.
The latter is appropriate for using in command line mvn latex:vrs, whereas in
builds by default the pom overwrites this to have output only in case something
goes wrong.
injections latexmkrc,chktexrc
Indicates the files injected by the goal inj. This is a comma separated list of
injections without blanks. For further description see Section 3.5.

Table 6.2: Parameters for goals vrs and inj

6.4 Parameters for graphical preprocessing
This section describes the parameters for graphical preprocessing given in Table 6.3.

TODO: do this.

Parameter Default
Explanation
fig2devCommand fig2dev
The fig2dev command for conversion of fig-files into various formats. Currently,
only PDF combined with ptx is supported.
fig2devGenOptions empty
The options for the command $fig2devCommand common to both output
languages. For the options specific for the two output languages ‘pdftex’ and
‘pdftex_t’, see the explanation of the parameters $fig2devPtxOptions and
$fig2devPdfEpsOptions, respectively.
fig2devPtxOptions empty
The options for the command $fig2devCommand specific for the output language
‘pdftex_t’. Note that in addition to these options, the option ‘-L pdftex_t’
specifies the language, $fig2devGenOptions specifies the options common for
the two output languages ‘pdftex’ and ‘pdftex_t’ and ‘-p xxx.pdf’ specifies
the PDF-file to be included.

6.4. PARAMETERS FOR GRAPHICAL PREPROCESSING 133

fig2devPdfEpsOptions empty
The options for the command $fig2devCommand specific for the output language
‘pdftex’. Note that in addition to these option1s, the option ‘-L pdftex’
specifies the language and $fig2devGenOptions specifies the options common
for the two output languages ‘pdftex’ and ‘pdftex_t’.
gnuplotCommand gnuplot
The command for conversion of gnuplot-files into various formats. Currently,
only pdf (graphics) combined with pdf_t (latex-texts) is supported.
gnuplotOptions empty
The options specific for $gnuplotCommand’s output terminal “cairolatex”, used
for mixed latex/pdf-creation. Note that the option ‘pdf|eps’ of the terminal
‘cairolatex’ is not available, because it is set internally.
metapostCommand mpost
The command for conversion of gnuplot-files into metapost’s postscript.
metapostOptions see Section 6.4.1
The options for the command $metapostCommand. Leading and trailing blanks
are ignored. A sequence of at least one blank separate the proper options.
patternErrMPost (^!)
The pattern is applied line by line to the log-file of $metapostCommand and
matching indicates an error emitted by the command $metapostCommand.
The default value is chosen to match quite exactly the latex errors in the log
file, no more no less. Since no official documentation was found,
The default pattern may be incomplete. In fact, it presupposes, that
$metapostOptions does not contain ‘-file-line-error-style’.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.
patternWarnMPost ^([Ww]arning:)
The pattern is applied line by line to the log-file of $metapostCommand and
matching indicates a warning emitted by the command $metapostCommand.
This pattern may never be ensured to be complete, because any library may
indicate a warning with its own pattern any new package may break complete-
ness. Nevertheless, the default value aims completeness while be restrictive
enough not to indicate a warning where none was emitted.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency. The
default value is given below.
svg2devCommand inkscape
The command for conversion of SVG-files into a mixed format.
svg2devOptions --export-area-drawing --export-latex
The options for the command $svg2devCommand for exporting SVG-figures
into latex compatible files. For more details see Section 6.4.2.
createBoundingBoxes false

134 CHAPTER 6. PARAMETERS RESP. SETTINGS

Whether for pixel formats like JPG and PNG command $ebbCommand is invoked
to determine the bounding box. This is relevant, if at all, only in dvi-mode.
Note that the package bmpsize is an alternative to invoking ebb, which seems
not to work for xelatex. Moreover, all seems to work fine with neither of these
techniques. The $dvi2pdfCommand given by the default, dvipdfmx, seems the
only which yields the picture sizes as in PDF mode which fit well. Note also
that MiKTeX offers neither package bmpsize nor ebb. This alone requires to
switch off invocation of ebb by default. So the default value is false.
ebbCommand ebb
The command to create bounding box information from JPG-files and from
PNG-files. This is run twice: once with parameter ‘-m’ to create ‘.bb’-files for
driver ‘dvipdfm’ and once with parameter ‘-x’ to create ‘.xbb’-files for driver
‘dvipdfmx’.
ebbOptions -v
The options for the command $ebbCommand except ‘-m’ and ‘-x’ which are
added automatically.

Table 6.3: Parameters for graphics preprocessing

6.4.1 The parameter metapostOptions

The options of the (sole standalone) metapost compiler are given in the metapost
manual [Hob24], Appendix B.2.1. The current default option line for this software
is as follows:

-interaction=nonstopmode -recorder -s prologues=2 -s outputtemplate="%j.mps"

The details are as follows:

-interaction=nonstopmode To avoid user interaction in case of an error This
seems mandatory.

-recorder Strictly speaking not necessary at the current stage, but for later
versions of this software, to allow dependencies tracking.

-s prologues=2 In general the -s assigns an internal key a value. Here it is the
kind of the prologue. The value 2 is a compromise between safe quality of
output and length of artifact. As described in detail in [Hob24], Section 8.2,
a value of 0 is sufficient for PDF output. Also, if no LATEX is used to typeset
labels, the prologue value is irrelevant. The value 1 is deprecated, 2 yields a
prologue only slightly longer than with 0, whereas the safest setting 3 yields
a huge prologue. So the compromise is 2 and if 3 is needed in individual
cases, this setting can be overwritten in the MP file.

6.5. PARAMETERS FOR THE LATEX-TO-PDF CONVERSION 135

outputtemplate=”%j.mps” determines the name of the output file. The default
given here uses the “jobname” and the canonical ending. Unlike the default
value of mpost, no number of the figure within the metapost file is given.
This comes from the fact that we assume a single figure only and ignore the
number of the figure.

6.4.2 The parameter svg2devOptions

The following options are mandatory:

–export-area-drawing Export the drawing (not the page).

–export-latex Export into PDF/PS/EPS format without text. Besides the
PDF/PS/EPS files, a LATEX-file latexfile.tex is exported, putting the
text on top of the PDF/PS/EPS file, i.e. including the according pure graphic
file. Include the result in LATEX as: \input{latexfile.tex}.
Note that the latter option is necessary, to create the expected files. It is also
conceivable to export text as pdf/eps

The following options are prohibited, because they are automatically added by the
software or interfers with:

–export-filename=FILENAME Export document to a file with type given by
the extension. This is used both to export into PDF and into EPS format.
The extension is always given explicitly.

–export-type=TYPE Overwrites the type given by --export-filename. If no
extension is given, this is to determine the export type.

6.5 Parameters for the LATEX-to-pdf Conversion
This section describes the parameters of the LATEX engine which are given in
Table 6.4.

TODO: do this.

Parameter Default
Explanation
latex2pdfCommand lualatex

136 CHAPTER 6. PARAMETERS RESP. SETTINGS

The LATEX command to create above all a PDF-file with, i.e. the LATEX engine.
Further formats are DVI and XDV and also other formats based on these.
Expected values are lualatex, xelatex and pdflatex. CAUTION: This
setting may be overwritten for individual LATEX main files using magic comments
as described in Section 3.1.1.2.
Note that for xelatex dvi mode (creating xdv-files instead of DVI-files) is not
supported, even not creating PDF or other formats via XDV. See also the
according options $latex2pdfOptions and $pdfViaDvi. In particular, this
maven plugin does not allow goal dvi and related for xelatex. Consequently,
’$targets’ may not contain any of these goals.
latex2pdfOptions see Section 6.5.1
The options for the command $latex2pdfCommand. Leading and trailing blanks
are ignored. A sequence of at least one blank separate the proper options.
patternErrLatex (^!)
The pattern is applied line-wise to the log-file and matching indicating an error
emitted by the command $latex2pdfCommand.
The default value is chosen to match quite exactly the latex errors in the log
file, no more no less. Since no official documentation was found, the default
pattern may be incomplete. In fact, it presupposes, that $latex2pdfOptions
does not contain “-file-line-error-style”.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.
patternWarnLatex see Section 6.5.2
The pattern is applied line-wise to the log-file and matching indicates a warning
emitted by the command $latex2pdfCommand, disregarding warnings on bad
boxes provided $debugWarnings is set.
This pattern may never be ensured to be complete, because any package
may indicate a warning with its own pattern any new package may break
completeness. Nevertheless, the default value aims completeness while be
restrictive enough not to indicate a warning where none was emitted.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.
debugBadBoxes true
Whether debugging of overfull/underfull hboxes/vboxes is on: If so, a bad box
occurs in the last LATEX run, a warning is displayed. For details, set $cleanUp
to false, rerun LATEX and have a look at the log-file.
debugWarnings true
Whether debugging of warnings is on: If so, a warning in the last LATEX run is
displayed. For details, set $cleanUp to false, rerun LATEX and have a look at
the log-file.
pdfViaDvi false

6.5. PARAMETERS FOR THE LATEX-TO-PDF CONVERSION 137

Whether creation of PDF-files from LATEX-files goes via dvi-files.
If $pdfViaDvi is set and the latex processor needs repetitions, these are all
done creating dvi and then pdf is created in a final step invoking the command
$dvi2pdfCommand. If $pdfViaDvi is not set, latex is directly converted into
pdf.
Currently, not only conversion of LATEX-files is affected, but also conversion
of graphic files into graphic formats which allow inclusion in the tex-file. If it
goes via latex, then the formats are more based on (encapsulated) postscript;
else on pdf.
In the dvi-file for jpg, png and svg only some space is visible and only in the
final step performed by $dvi2pdfCommand, the pictures are included using the
bounding boxes given by the .bb or the .xbb-file. These are both created by
$ebbCommand.
Of course, the target dvi is not affected: This uses always the dvi-format. What
is also affected are the tasks creating HTML, ODT or docs: Although these
are based on htlatex which is always dvi-based, the preprocessing is done in
dvi or in pdf. Also the task TXT is affected.
As indicated in $latex2pdfCommand, the processor xelatex does not create
dvi but xdv files. In a sense, the xdv format is an extension of dvi but as
for he xdv format there is no viewer, no way htlatex or other applications
(except the xelatex-internal xdvidpfmx) and also no according mime type, we
refrained from subsumming this under “kind of dvi”. Thus, with xelatex the
flag $pdfViaDvi may not be set.
dvi2pdfCommand dvipdfmx
The driver to convert dvi into PDF-files. Note that this must fit the options of
the packages ‘xcolor’, ‘graphicx’ and, provided no autodetection, hyperref.
Sensible values are ‘dvipdfm’, ‘dvipdfmx’ and ‘dvipdft’, which are all the
same in my implementation and ‘dvipdft’ (which is roughly a wrapper around
‘dvipdfm’ with option -t using ‘gs’). Note that ‘dvipdf’ is just a script around
‘dvips’ using ‘gs’, but does not provide proper options; so not allowed.
dvi2pdfOptions the empty string
The options for the command $dvi2pdfCommand. The default value is ’-
V1.7’ specifying the PDF version to be created. The default version for
PDF format for $dvi2pdfCommand is version 1.5. The reason for using ver-
sion 1.7 is $fig2dev which creates PDF figures in version 1.7 and forces
$latex2pdfCommand in DVI mode to include PDF version 1.7 and finally
$dvi2pdfCommand to use that also to avoid warnings.
Using $latex2pdfCommand if used to create PDF directly, by default also PDF
version 1.5 is created. For sake of uniformity, it is advisable to create PDF ver-
sion 1.7 also. In future this will be done uniformly through \DocumentMetadata
command.

138 CHAPTER 6. PARAMETERS RESP. SETTINGS

patternReRunLatex see Section 6.5.3
The pattern is applied line-wise to the log file and matching triggers rerun-
ning $latex2pdfCommand if $maxNumReRunsLatex is not yet reached to ensure
termination.
This pattern may never be ensured to be complete, because any package may
indicate the need to rerun $latex2pdfCommand with its own pattern and so
any new package may break completeness. Nevertheless, the default value aims
completeness while be tight enough not to trigger a superfluous rerun.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.
maxNumRerunsLatex 5
The maximal allowed number of reruns of the LATEX process. This is to avoid
endless repetitions. This shall be non-negative or -1 which signifies that there
is no threshold.

Table 6.4: The LATEX-to PDF conversion

6.5.1 The parameter latex2pdfOptions

An overview over the options supported by the usual latex engines in distribution
TEX Live is given in [Rei23b], Section 2. In particular, there is a table with the
options occurring in any LATEX engine and columns indicating for each option for
which engines it is valid. Note that unlike the other engines, lualatex defines
options starting with --, it works on according options starting with single dash
also. To support all engines with the same parameters, the default options are
among the ones common to all supported engines. Currently, default option line is
as follows:

-interaction=nonstopmode -synctex=1 -recorder -shell-escape

The details are as follows:

-interaction=nonstopmode To avoid user interaction in case of an error This
seems mandatory.

-synctex=1 to create .synctex.gz files needed for interaction between editor
and viewer.

-recorder Strictly speaking not necessary at the current stage, but for later
versions of this software, to allows tracking dependencies.

-shell-escape allows the TEX engine to access the shell to execute. This is needed
for some reason for driver dvipdfmx which seems to be the sole one supporting
PDF-pictures in DVI-mode and PDF-pictures in PDF-mode.

6.5. PARAMETERS FOR THE LATEX-TO-PDF CONVERSION 139

An alternative would be -shell-restricted. CAUTION: In MiKTeX this
is --enable-write18 instead.

Note that part of the default values is mandatory, in particular nonstopmode,
but there are also options which are not allowed. In most of the cases, the problem
is that the latex engine does not create an output or does not create it in the
expected location or in the expected form. This may apply to the main artifact,
i.e. PDF or DVI or XDV, but it may also apply to log files and other files.

The following list of prohibited options is illustrative but not complete:

-draftmode switch on draft mode (generates no output PDF which causes an
error)

-output-directory=dir to specify the output directory

-aux-directory=dir to specify the auxiliary output directory

-job-name=name effectively changes the output file name

-quiet makes the log quiet and so circumvents error and warning detection

-fmt=FMTNAME use FMTNAME instead of program name or a %& line

–luaonly run a lua file, then exit

-output-format=FORMAT use FORMAT for job output; FORMAT is ‘dvi’ or
‘pdf’ pdf is the only allowed …. This is not supported by xelatex.

-no-pdf generate XDV (extended DVI) output rather than PDF. This is specific
for xelatex.

-progname=STRING set program (and fmt) name to STRING only names also
without -progname are possible

-help display this help and exit

-version output version information and exit

Note that the default value of $patternErrLatex excludes option -file-line-
error-style and its synonym --file-line-error-style. Nevertheless, these
options can be used if the pattern $patternErrLatex is adapted.

Also option -halt-on-error is not strictly forbidden, but not recommended,
because it prevents operation as intended for this software.

Two options deserve particular notification, both specifying the output format:

140 CHAPTER 6. PARAMETERS RESP. SETTINGS

-no-pdf which is specific to xelatex, makes xelatex create XDV files which
currently cannot be further processed by this software. As soon as this
software supports XDV files, this option is set by this software, not by the
user.

-output-format=FORMAT , which this software uses to set the output format,
either to dvi or to pdf. Strictly speaking, this option is supported by all
engines, except for xelatex. For xelatex, this software only supports pdf,
which xelatex creates because -no-pdf is not given. The option -output-
format=pdf does no harm, because it is ignored. As soon as this software
supports XDV creation, it will no longer pass -output-format to xelatex.

In general, there are two forms of options, one starting with double dash, --,
and the other form with single dash. In TEX Live, pdflatex and xelatex use
single dash, whereas lualatex uses double dash according to the help text. But
using the single dash always is ok, because lualatex understands single dash also.

In MiKTeX, all options of all engines are double dash. It must be clarified,
whether they understand single dash. If not one has to clarify whether in TEX Live
all engines understand double dash. If so all must be changed into double dash.

6.5.2 The parameter patternWarnLatex

The patterns given below are just by (unwritten) convention. As a consequence,
the pattern has a comprehensive default value covering all warnings known to
the author, while not detecting a warning, where there is none. To that end, the
pattern requires that the warning text starts with the line of the log file. Still the
pattern has to be configurable to allow the user to overwrite the default value not
being forced to wait for the developer to change it.

For the current default value, we distinguish

• LATEX-warnings emitted directly by LATEX starting with LaTeX Warning: ,

• LATEX-font-warnings related with fonts/font selection starting with LaTeX
Font Warning: ,

• Package warnings emitted by a package. By convention, a package emitting
a warning identifies itself by its name <name> emitting a warning starting
with Package <name> Warning: ,

• Class warnings emitted by a package. By convention, a class emitting a
warning identifies itself by its name <name> emitting a warning starting with
Class <name> Warning: ,

6.5. PARAMETERS FOR THE LATEX-TO-PDF CONVERSION 141

• pdfTEX-warning starting with pdfTeX warning and being specific for the
compiler pdflatex,

• Warnings on inclusion of a PDF file, e.g. inclusion of PDF files with incompat-
ible version, starting with warning (file <filename>) (pdf inclusion),

• Font specification warnings starting with * fontspec warning2,

• Further warnings not identifying themselves as warnings as the word “warning”
does not occur. Still they are treated as warning because they all indicate
some imperfection in the output.

The resulting default pattern is

^(LaTeX Warning: |
LaTeX Font Warning: |
(Package|Class) .+ Warning: |
pdfTeX warning(\((\d|\w)+\))?: |
* fontspec warning: |
Non-PDF special ignored!|
Missing character: There is no .* in font .*!$|
A space is missing\. (No warning)\.)

6.5.3 The parameter patternReRunLatex

TODO: rework based on comments in class Settings.
For the package rerunfilecheck an analysis of the code is possible, and the

warnings emitted by this package indicating the need for rerun are taken into
account for the pattern.

Besides this package, also other packages may require rerun, but these are not
analyzes systematically. A first step would be to analyze those given in header.tex
created by injection.

As a consequence, the pattern has a comprehensive default value covering all
warnings known to the author, while not detecting a warning, where there is none.
To that end, the pattern requires that the warning text starts with the line of the
log file. Still the pattern has to be configurable to allow the user to overwrite the
default value not being forced to wait for the developer to change it.

The resulting default pattern is
^(LaTeX Warning: Label\(s\) may have changed\. Rerun to get cross-references right\.$|
Package \w+ Warning: .*Rerun(.*|\.)$|
Package rerunfilecheck Info: Checksums for |
Package \w+ Warning: .*$^\(\w+\) .*Rerun(.*|\.)$|

2Please note the leading character “*”.

142 CHAPTER 6. PARAMETERS RESP. SETTINGS

LaTeX Warning: Etaremune labels have changed\.$|
\(rerunfilecheck\) Rerun to get outlines right$|
\(rerunfilecheck\) Rerun LaTeX)

There is one Info message in there, also indicating the need for rerun. This is
inserted because another rerun warning may fail to apply because it contains the
file name and if this is too long, then the required sequence “Rerun.” is cut off
and is not on the current line.

Still what is good, if such a warning is not recognized as a pattern indicating
the need for rerun, it occurs in the final LOG file and is recognized as a warning. So
it is merely impossible to get a result with not enough reruns and without warning.

FIXME: There is a bug in this pattern. See Section 9.

6.6 Parameters for creation of the bibliography
This section describes the parameters or creation of the bibliography which are
given in Table 6.5.

TODO: do this.

Parameter Default
Explanation
bibtexCommand bibtex
The BibTeX command to create a bbl-file from an aux-file and a bib-file (using
a bst-style file).
bibtexOptions empty
The options for the command $bibtexCommand.
patternErrBibtex error message
The pattern is applied line-wise to the blg-file and matching indicates that
$bibtexCommand failed. The default value is chosen according to the ‘bibtex’
documentation.
patternWarnBibtex ^Warning--
The pattern is applied line-wise to the blg-file and matching indicates a warning
$bibtexCommand emitted. The default value is chosen according to the ‘bibtex’
documentation.

Table 6.5: The BibTeX-utility

6.7 Parameters for creation of the indices
This section describes the parameters or creation of the indices which are given in
Table 6.6.

TODO: do this.

6.7. PARAMETERS FOR CREATION OF THE INDICES 143

Parameter Default
Explanation
makeIndexCommand makeindex
The MakeIndex command to create an ind-file from an idx-file logging on an
ilg-file.
makeIndexOptions the empty string
The options for the MakeIndex command.
patternErrMakeIndex (!! Input index error)
The pattern is applied line-wise to the ilg-file and matching indicates that
$makeIndexCommand failed. The default value is chosen according to the
‘makeindex’ documentation.
patternWarnMakeIndex (## Warning)
The pattern is applied line-wise to the ilg-file and matching indicates a warning
$makeIndexCommand emitted. The default value is chosen according to the
‘makeindex’ documentation.
patternReRunMakeIndex
This parameter is deprecated since version 2.1. Rerun check of auxiliary
programs do not read the LOG file. Details of the present algorithm are
described in Section 5.6.
The pattern is applied line-wise to the log-file and matching triggers rerunning
$makeIndexCommand followed by $latex2pdfCommand.
This pattern only matches a warning emitted by the package ‘rerunfilecheck’
e.g. used with option ‘index’. The default value is chosen according to the
package documentation.
splitIndexCommand splitindex
The SplitIndex command to create ind-files from an idx-file logging on ilg-files.
This command invokes $makeIndexCommand.
splitIndexOptions -V
The options for $splitIndexCommand. Here, one has to distinguish be-
tween the options processed by $splitIndexCommand and those passed to
$makeIndexCommand. The second category cannot be specified here, it is al-
ready given by $makeIndexOptions. In the first category is the option ‘-m’
to specify the $makeIndexCommand. This is used automatically and cannot
be specified here. Since $splitIndexCommand is used in conjunction with
package ‘splitidx’, which hardcodes various parameters which are the default
values for $splitIndexCommand and because the option may not alter certain
interfaces, the only option which may be given explicitly is ‘-V’, the short cut
for ‘--verbose’. Do not use ‘--verbose’ either for sake of portability.

Table 6.6: The utilities MakeIndex and SplitIndex

144 CHAPTER 6. PARAMETERS RESP. SETTINGS

6.8 Parameters for creation of the Glossary
This section describes the parameters or creation of the glossary which are given in
Table 6.7.

Besides the options for makeindex and xindy described in Table 6.7, the
program makeglossaries has additional options from which the following are not
allowed:

-q which makes no sense in internal build process. When using latexmk, that tool
adds this option by internal mechanisms so it shall not be added manually
either.

-n prevents from execution of proper commands.

-o, -d which expects and places files in locations this software does not expect.

TODO: complete

Parameter Default
Explanation
makeGlossariesCommand makeglossaries
The MakeGlossaries command to create a gls-file from a glo-file (invoked
without file ending) also taking ist-file or xdy-file into account logging on a
glg-file.
makeGlossariesOptions the empty string
The options for the $makeGlossariesCommand. They are described in Sec-
tion 6.8. Among the options are the options for ‘makeindex’ (not for
$makeIndexCommand) and for ‘xindy’ (also hard-coded). The aux-file decides
on which program is executed and consequently which options are used.
The default value is the empty option string. Nevertheless, ‘xindy’ is invoked as
‘xindy -L english -I xindy -M…’. With option ‘-L german’, this is added.
Options ‘-M<’ for ‘xindy’ ‘-s’ for ‘makeindex’ and ‘-t’ and ‘-o’ for both,
‘xindy’ and ‘makeindex’.
patternErrMakeGlossaries (^*** unable to execute:)
The pattern is applied line-wise to the ‘glg’-file and matching indicates
that $makeGlossariesCommand failed. The default value ‘(̂ unable to
execute:)’ is chosen according to the makeindex documentation. If the
default value is not appropriate, please modify and notify the developer of this
plugin.
patternErrXindy (^ERROR:)
The pattern in the GLG (makeglossaries log file)-file which indicates an error
when running ‘xindy’ via $makeGlossariesCommand. If the default value is
not appropriate, please modify and notify the developer of this plugin.

6.9. PARAMETERS FOR INCLUDING CODE VIA PYTHONTEX 145

patternWarnXindy (^WARNING:)
The pattern is applied line-wise to the ‘glg’-file and matching indicates a
warning when running ‘xindy’ via $makeGlossariesCommand.
The default value ‘(^WARNING:)’ (note the space and the brackets) is chosen
according to the ’xindy’ documentation.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the deficiency.
patternReRunMakeGlossaries
This parameter is deprecated since version 2.1. Rerun check of auxiliary
programs do not read the LOG file. Details of the present algorithm are
described in Section 5.6.
The pattern is applied line-wise to the log file and matching triggers rerunning
$makeGlossariesCommand followed by $latex2pdfCommand.
This pattern only matches a warning emitted by the package ‘rerunfilecheck’
e.g. used with option ‘glossary’. The default value is chosen according to the
package documentation.

Table 6.7: The MakeGlossaries-utility

6.9 Parameters for including code via pythontex
This section describes the parameters for invoking pythontex and parameters for
invoking depythontex which are given in Table 6.8 and in Table 6.9, respectively.

Parameter Default
Explanation
pythontexCommand pythontex
The PythonTeX command which creates a folder pythontex-files-xxx with
various files inside from a PYTXCODE-file (invoked without file ending) and
logging in a PLG (pythontex log file: home-brewed since the original applica-
tion does not write log files)-file. The default value is pythontex but as long
as this does not write a log file this software really needs, we have to configure
it with pythontexW which is a simple wrapper of pythontex writing a log file.
CAUTION: Since pythontexW is not registered with this software, one has to
specify it with its category as pythontexW:pythontex.
pythontexOptions --rerun=always

146 CHAPTER 6. PARAMETERS RESP. SETTINGS

The options for the command $pythontexCommand.
For the possibilities see the manual of the pythontex package or the help dialog
of pythontex. CAUTION: --rerun and --runall cannot be specified both in
one invocation. In the context of this software, the option --interactive is
not appropriate. CAUTION: For many options of the command line tool, there
is an according package option and the latter overrides the former. CAUTION:
This software overwrites settings --rerun and --runall anyway, and forces
setting --rerun=always. The default value is --rerun=always.
patternErrPyTex see Section 6.9
The pattern in the PLG-file indicating that running pythontex, resp.
pythontexW via $pythontexCommand failed. The pattern would fit into a
single line but because of a bug in pythontex, it is a bit more complicated. If
this is not appropriate, please modify and notify the developer of this plugin.
patternWarnPyTex see Section 6.9
The pattern in the PLG-file indicating a warning when running pythontex,
resp. pythontexW via $mpythontexCommand. If this is not appropriate, please
modify and notify the developer of this plugin.
prefixPytexOutFolder pythontex-files-
The prefix of the name of the folder written by $pythontexCommand. The full
name of that folder is this prefix followed by the jobname of the LATEX main
file, i.e. the filename without ending.
CAUTION: This is readonly, because in both, the pythontex tool and the
according LATEX package this prefix is hardcoded at time of this writing.

Table 6.8: Injecting output of code via pythontex

Parameter Default
Explanation
depythontexCommand depythontex
The Depythontex command invoked with no file ending to create a file
xxx.depytx.tex filefrom a tex-file, a DEPYTXC-file taking the output of
pythontex into account and logging on a DPLG (depythontex log file: home-
brewed since the original application does not write log files)-file. The default
value is depythontex but as long as this does not write a log file this software
really needs, we have to configure it with depythontexW which is a simple
wrapper of depythontex writing a log file. CAUTION: Since depythontexW
is not registered with this software, one has to specify it with its category as
depythontexW:depythontex.
depythontexOptions the empty string

Table 6.9: Replacing code by its output via depythontex

6.10. PARAMETERS FOR CONVERSION LATEX TO HTML 147

The pattern patternErrPyTex is by default

* PythonTeX error|...

substituting the dots by

(PythonTeX: .+ -| - Current:) [1-9][0-9]* error\(s\), [0-9]+ warning\(s\)

Accordingly, the pattern textttpatternWarnPyTex is by default

(PythonTeX: .+ -| - Current:) [0-9]+ error\\(s\), [1-9][0-9]* warning\(s\)

6.10 Parameters for conversion LATEX to HTML
This section describes the parameters of the LATEX-to-html converter which are
given in Table 6.10.

Parameter Default
Explanation
tex4htCommand htlatex

tex4htStyOptions xhtml,uni-html4,2,svg,pic-tabular

tex4htOptions ' -cunihtf -utf8'

t4htOptions the empty string
The options for ‘t4ht’ which converts idv-file and lg-file into css-files, tmp-file
and, by need and if configured accordingly into PNG-files. The value ‘-p’
prevents creation of PNG-pictures.
patternT4htOutputFiles see Section 6.10.1

148 CHAPTER 6. PARAMETERS RESP. SETTINGS

The pattern is applied to file names and matching shall accept exactly the
target files of goal ‘html’ for a given LATEX main file ‘xxx.tex’. Matching
triggers copying those files to $outputDirectory.
The patterns for the other targets are hardcoded and take the form
‘^T$T\.yyy$’, where ‘yyy’ may be an ending or an alternative of endings.
This pattern is neither applied to directories nor to ‘xxx.tex’ itself.
For an explanation of the pattern ‘T$T’ see $patternCreatedFromLatexMain.
Spaces and newlines are removed from that pattern before processing.
The pattern is designed to match quite exactly the files to be copied to
$targetSiteDirectory, for the goal ‘html’, not much more and at any case
not less. Since $tex2htCommand is not well documented, and still subject to
development, this pattern cannot be guaranteed to be final.
If the current default value is not appropriate, please overwrite it in the
configuration and notify the developer of this plugin of the bug.

Table 6.10: The LATEX-to-html-converter

6.10.1 The parameter patternT4htOutputFiles

The default value has the following components:

• ‘^T$T\.x?html?$’ is the main output file.

• ‘^T$Tli\d+\.x?html?$’ are lists: toc, lof, lot, indices, glossaries, NOT the
bibliography.

• ’^T$T(ch|se|su|ap)\d+\.x?html?$’ are chapters, sections and subsections
or below and appendices.

• ‘^T$T\d+\.x?html?$’ are footnotes.

• ‘^T$T\.css$’ are cascaded stylesheets.

• ‘^T$T-\d+\.svg$’ and ‘^T$T\d+x\.png$’ are svg/png-files representing fig-
ures.

• ‘^T$T\d+x\.x?bb’ are the bounding boxes (suffix .bb for dvipdfm and suffix
.xbb for dvipdfmx).

• ‘^(cmsy)\d+(-c)?-\d+c?\.png$’ represents special symbols.

Note that the patterns for the html-files can be summarized as

^T$T((ch|se|su|ap|li)?\d+)?\.x?html?\$

6.11. PARAMETERS FOR FURTHER CONVERSIONS 149

This altogether constitutes the default value for this pattern:

^(T$T(((ch|se|su|ap|li)?\d+)?\.x?html?|
\.css|
\d+x\.x?bb|
\d+x\.png|
-\d+\.svg)|
(cmsy)\d+(-c)?-\d+c?\.png)$

The pattern is designed to match quite exactly the files to be copied to
$targetSiteDirectory, for the goal “html”, not much more and at any case
not less. since $tex2htCommand is not well documented, and still subject to devel-
opment, this pattern cannot be guaranteed to be final.

6.11 Parameters for further conversions
This section describes the parameters of the converter from and to further formats
which are given in Table 6.11.

These converters convert latex into RTF directly, they convert ODT into doc-
like documents and pdf into pure text. A special case is the code-checker in a sense
converting latex into a log-file. For each of them, the name of the command can
be specified and also the options. Since neither of them, except the code checker,
write a log-file, there are no further parameters necessary.

Parameter Default
Explanation
latex2rtfCommand latex2rtf
The latex2rtf command to create RTF from latex directly.
latex2rtfOptions the empty string
The options of the command $latex2rtfCommand.
odt2docCommand odt2doc
The odt2doc command to create MS word-formats from otd-files.
odt2docOptions -fdocx
The options of the command $odt2docCommand. Above all specification
of output format via the option ’-f’. Invocation is ’odt2doc -f<format>
<file>.odt’. All output formats are shown by ‘odt2doc --show’ but the for-
mats interesting in this context are the following: doc, doc6, doc95, docbook,
docx, docx7, ooxml and rtf. Interesting also the verbosity options ‘-v’, ‘-
vv’, ‘-vvv’ the timeout ‘-T=secs’ and ‘--preserve’ to keep permissions and
timestamp of the original document.
pdf2txtCommand pdftotext

150 CHAPTER 6. PARAMETERS RESP. SETTINGS

The pdf2txt-command for converting PDF-files into plain text files.
pdf2txtOptions the empty string
The options of the command $pdf2txtCommand.

Table 6.11: The parameters of further converters

FIXME: Note that pdftotext -h prints a usage message. This is a way to
obtain not the specified output. It shows that pdftotext -q does not print any
messages or errors. This indicates that pdftotext normally does display error
messages on the standard output. These may be led to a log file to indicate errors
and warnings. Here, further research is required.

The option -htmlmeta seems not approprate. The option resolution -r seems
sensible only in conjunction with the crop area defined by -x and -y which does
not make sense in our context. The same holds for specification of the first and
the last page via -f and -l. What does make sense is specifying the encoding via
-enc with possible values given by pdftotext -listenc. What makes sense most
is UTF-8.

6.12 Parameters for the code checker chktex
Among the applications used by this software, the codechecker plays a special role:
it is not really a converter, unless we interprete the log file as artifact. Like for
the most converters also for the codechecker we can specify the command ant its
options, both given in Table 6.12.

Parameter Default
Explanation
chkTexCommand chktex
The chktex-command for checking LATEX main files.
chkTexOptions -q -b0
The options of the command $chkTexCommand, except “-o output-file” spec-
ifying the output file which is added automatically. For further details see the
options below.

Table 6.12: The parameters of the code checker

The options of chktex are described in detail in [Thi22], Section 6.1.2.
Here is a list of options useful in this context. The first group of these are

muting options:
• ’-w’, ’-e’, ’-m’, Make the message number passed as parameter a warning/an

error/a message and turns it on. Messages are not counted.

6.12. PARAMETERS FOR THE CODE CHECKER CHKTEX 151

• ’-n’ Turns the warning/error number passed as a parameter off.

• ’-L’ Turns off suppression of messages on a per line basis.

The next group of interesting options are for output control:

’-q’ Shuts up about copyright information.

’-o output-file’ Specifies the output file. This is added automatically and shall thus not be
specified by the user.

’-b0/1’ If you use the -o switch, and the named output-file exists, it will be renamed
to ‘filename.bak’ for option -b1 and not for -b0.

’-f format’ Specifies the format of the output via a format similar to “printf()’. For
details consult the manual [Thi22], Section 6.1.2. The codes are listed below.

’-vd’ Verbosity level followed by a number ‘d’ specifying the format of the output
according to the listing below. The verbosity number is resolved as a pattern
as if given by the option ‘-f format’. Thus the option ‘-v’ is ignored if the
option ‘-f format’ is specified.

The default value -q -b0 avoids verbose output and backing up the output
log-file.

Code

%b String to print between fields (from -s option).

%c Column position of error.

%d Length of error (digit).

%f Current file-name.

%i Turn on inverse printing mode.

%I Turn off inverse printing mode.

%k kind of error (warning, error, message).

%l line number of error.

%m Warning message.

%n Warning number.

%u An underlining line (like the one which appears when using ’-v1’).

152 CHAPTER 6. PARAMETERS RESP. SETTINGS

%r Part of line in front of error (’S’-1).

%s Part of line which contains error (string).

%t Part of line after error (’S’+1).

FIXME: to be inserted. See [Thi22], Section 6.1.6. From chktexrc:

OutFormat
{
-v0; silent mode
%f%b%l%b%c%b%n%b%m!n

-v1; normal mode
"%k %n in %f line %l: %m!n%r%s%t!n%u!n"

-v2; fancy mode
"%k %n in %f line %l: %m!n%r%i%s%I%t!n!n"

-v3; lacheck mode
"!"%f!", line %l: %m!n"

-v4; verbose lacheck mode
"!"%f!", line %l: %m!n%r%s%t!n%u!n"

-v5; no line number, ease auto-test
"%k %n in %f: %m!n%r%s%t!n%u!n"

-v6; emacs compilation mode
"!"%f!", line %l.%c:(#%n) %m!n"
}

Note that “!” is to escape quotes and newline. More than these can be added
to chktexrc.

This document is checked with options deviating from the default value:

-q -b0 -v1 -g0 -l ${basedir}/src/site/tex/chktexrc

The default is -q -b0, option -g0 means that the global chktexrc is not used and
option

-l ${basedir}/src/site/tex/chktexrc

specifies a record file tailored to the needs of this project. In particular, the pattern
for -v1 is slightly modified: It is

6.13. PARAMETERS FOR ENSURING REPRODUCIBILITY 153

-v1; normal mode
"%k %n in %f line %l: %m!n %r%s%t!n %u!n"

which adds a blank to all lines but the headlines. That way, the kind of issue (%k)
is easily parsed. This could be used for emitting an error instead of a warning
when processing goal check.

Although the return code of chktex is not documented, a bit of reverse engi-
neering shows the following distinction:

0. Successful execution and found neither an error nor a warning.

1. Execution as such did not succeed, e.g. because of an invalid option like -exx.

2. An error occurred and in particular execution as such suceeded.

3. A warning occurred but no error and in particular execution as such suceeded.

On this behavior this software bases its failure messages.
The options of chktex are described in detail in [Thi22], Section 6.1.2.

6.13 Parameters for ensuring reproducibility
For a general description of the reproducibility check see Section 5.8. Here we go
into the details and identify the parameters controlling the check and specified in
great detail in Table 6.13. As already mentioned in Section 5.8, currently, checks
are performed for artifacts in pdf format only; more formally, if the target (which
is in parameter target described in Table 6.1) is pdf.

But if so, the parameter chkDiff decides whether a check is performed at all.
Note that checking is off by default. Then a diffing tool given by diffPdfCommand
expects the blueprints in the directory diffDirectory. In contrast, the ac-
tual artifacts to be checked are in outputDirectory, whereas the sources are
in texSrcDirectory.

The location of a source tex file relative to texSrcDirectory is the location
of the artifact relative to outputDirectory. This path relative to diffDirectory
is the location of the blueprint. With the actual artifact in outputDirectory
and the blueprint in diffDirectory the diff-tool determines whether the both are
equivalent. If so, equivalence is logged as an info, else an exception described in
Table 7.7 is thrown.

Note that the choiced of the diff tool diffPdfCommand determines the notion
of equivalence of the pdf artifacts, ranging from byte equivalence to some kind of
visual equivalence.

154 CHAPTER 6. PARAMETERS RESP. SETTINGS

Parameter Default
Explanation
diffDirectory src/main/resources/docsCmp
Diff directory relative to $baseDirectory used for diffing actually created
artifact against prescribed one inthis directory. This is relevant only if $chkDiff
is set.
chkDiff false
Indicates whether after creating artifacts and copying them to the output
directory $outputDirectory the artifacts are checked by diffing them against
preexisting artifacts in $diffDirectory using the diff command given by
$diffPdfCommand. If this is set, the system time is set to 0 indicating
1970–01–01. Note that currently, only pdf files are checked.
This setting can be overwritten for individual LATEX main files by the magic
comment chkDiffMagic described in Section 6.2.1.
This is false by default and is set to true only in the context of tests.
diffPdfCommand diff
The diff-command for diffing PDF-files strictly or just visually to check that
the created pdf files are equivalent with prescribed ones. CAUTION: There
are two philsophies: Either the latex source files are created in a way that they
reproduce strictly. Then a strict diff command like diff is appropriate. Else
another diff command is required which checks for a kind of visual equality.
The default value is a mere diff. Alternatives are diff-pdf and diff-pdf-
visually both implementing a visual diff. Note that unlike for other tools, no
options can be passed in this case explicitly.
pdfMetainfoCommand pdfinfo
Command to retrieve metainfo from PDF files. Essentially, there are two
possibilities, exiftool or pdfinfo but currently this software is restricted to
the latter. At time of this writing, only creation time is considered. Note that
meta info CreationTime is not identical with creation time in a file system.
pdfMetainfoOptions -isodates
The options for the command $pdfMetainfoCommand which is currently always
pdfinfo. At time of this writing, only creation time is considered. This software
has little flexibility in treating various time formats, so it must be decided.
Format offered by pdfinfo most commonly known and easily converted to the
required epoch time, is really according to ISO 8601. This motivates -isodates
to be a mandatory option. Further options do not make sense, as currently
only creation time is used. So -isodates is more than a mere default value.

Table 6.13: The parameters of the pdf differ

6.14. PARAMETERS FOR LATEXMK AND RELATED 155

6.14 Parameters for latexmk and related
As described in Section 5.9, based on the parameter $latexmkUsage described in
Table 6.1 on page 126, the build process can be delegated gradually to latexmk or
an equivalent tool. Table 6.14 lists the parameters controlling invocation. Note that
besides the options, which shall be used with care, also the config file .latexmkrc
goes into. The details concerning the config file are described in [Col23], Section
“CONFIGURATION/INITIALIZATION (RC) FILES”. On the other hand, as
indicated in [Col23], Section “DEALING WITH ERRORS, PROBLEMS, ETC”,
latexmk does not write its own log file and so there is no parameter in Table 6.14
for a pattern of warnings or errors.

Parameter Default
Explanation
latexmkCommand latexmk
The latexmk command to create a pdf-file from a latex file and other files. In-
stead of the default value latexmk a wrapper is conceivable, a reimplementation
seems quite unlikely *smile*.
latexmkOptions empty
The options for the command $latexmkCommand. Since this command is
controlled to a wide extend by the config file .latexmkrc, the options are of
minor importance. On the other hand, there are options not allowed for this
software because they change behavior in a way not taken into account. So add
options with care. The allowed options and their defaults are given in [Col23],
Section “LATEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE”.

Table 6.14: The parameters for latexmk and related

156 CHAPTER 6. PARAMETERS RESP. SETTINGS

Chapter 7

Exceptions and Logging

If during execution of this software something goes wrong, and it is possible to
detect that, the user shall be notified.

Maven foresees a mechanism to abort the whole build, i.e. lifecycle phase or a
single goal and accordingly ant allows to abort a task. In both cases, abortion is
implemented by throwing an exception.

A maven plugin aborts a goal throwing a

org.apache.maven.plugin.MojoFailureException

and a

org.apache.maven.plugin.MojoExecutionException

to abort the life-cycle phase. Since this plugin is just for documentation, there is
no need to abort site creation altogether, so only the former exception occurs.

An ant-task aborts an ant-build throwing a

org.apache.tools.ant.BuildException

without further distinction.
This software provides both a maven plugin and an ant task built on the same

code base. Thus, the maven plugin throws a MojoFailureException if and only if
the according ant-task throws an BuildException in the same situation.

Section 7.1 describes the philosophy of throwing an exception and defines in
detail under what circumstances which exception is thrown.

Roughly speaking, an exception is thrown only if something is really wrong,
e.g. a non-recoverable error or an indication that the build system is out of control
or if this plugin/task is likely to destroy the work of another plugin/task.

If something went wrong, but no exception is thrown, the user must be notified
by logging and the build process to go on, skipping a section of a task as small as

157

158 CHAPTER 7. EXCEPTIONS AND LOGGING

possible. Both, maven and ant provide a logging mechanism with the levels error,
warning, info and debug. Section 7.2 describes the errors and warnings; the lot of
infos and debugging output are not described here.

Verbosity is chosen by the following command line options:

-e shows error messages,

-X shows debug-messages,

-q quiet hides the info-level and shows only errors.

There seems no way to get warnings only.
Each exception offers a message and also each warning has a warning message.

The messages are endowed with a unique identifier of the form KCCDD, where K is
the kind which is one of

T Throwable, which results in a MojoFailureException for the maven-plugin
and BuildException for the ant-task. This is described in detail in Sec-
tion 7.1

E logging as ERROR,

W logging as WARNING

I logging as INFO which occurs frequently

D logging as DEBUGGING output, which is lengthy

The shortcut CC describes the class where the exception is thrown or the warning
is logged:

EX CommandExectutorImpl: a class executing applications on a command line.

PP LatexPreProcessor: preprocessing of LATEX-files: Processing of graphic files
and detection of LATEX main files.

LP LatexProcessor: processing of LATEX main files: conversion into various output
formats.

SS Settings: A container holding the values of all parameters. These are either
default or read from the configuration in the pom for the maven plugin and
in the build file for the ant task.

MI MetaInfo: offering meta information as expected and actual versions of
converters.

159

FU TexFileUtilsImpl: a class providing access to files.

Finally, DD is a two digit number enumerating the messages.

Identifier Message
Explanation
WMI01 Version string from converter $conv did not match expected form:

$conv: 'version'not?in$interv
Indicates that the version string coming from the converter $conv is not as
expected. Programming error excluded, this means that the version does not
fit, i.e. is not in $interv.
WMI02 $conv: '$actVersion'not in$interv
Indicates that the version of converter $conv can be detected and is $actVersion
but does not fit the expectation which is $expVersion.

Table 7.1: The logging for MetaInfo

Identifier Message
Explanation
WFU01 Cannot read directory '$dir';

build may be incomplete.

TBD
XFU02 TBD

TBD
WFU03 Cannot close '$file'.

TBD
EFU05 Cannot delete file '$file'.

TBD
EFU06 Cannot move file '$src' to '$dest'.

TBD
EFU07 File '$srcFile' to be filtered cannot be read.
WORKAROUND for inkscape filtering eps_tex-file into ptx file: The former
is not a readable regular file.
EFU08 Destination file '$destFile' for filtering cannot be written.
WORKAROUND for inkscape filtering eps_tex-file into ptx file: The latter
is not a writable regular file.
EFU09 Cannot filter file '$srcFile' into '$destFile'.
WORKAROUND for inkscape filtering eps_tex-file into ptx file: Either
reading a line or writing a line failed.
WFU10 Cannot overwrite/clean file '$aFile'

because it is not self-created.

160 CHAPTER 7. EXCEPTIONS AND LOGGING

May occur if a file, e.g. .latexmkrc is present in the latex source directory
and is not created by this software. To avoid the risk of overwriting or deleting
user-written files, only config files written by this software can be overwritten
in goal inj or deleted in goal clr.
WFU11 Refuse to overwrite/clean file '$aFile'

because it may be not self-created or has dangling reader.
To avoid the risk of overwriting or deleting user-written files, this software
checks whether it was this software which wrote the files by reading the headline.
If this is not possible or if the reader to read that headline could not be closed
after reading, this warning is emitted. Neither is the file overwritten in goal
inj nor is it deleted in goal clr.

Table 7.2: The logging for TexFileUtils

TBD: check whether workaround still necessary. TBD: complete list TBD: add
missing lists

7.1 Exceptions
Exceptions are thrown only if no substantial part of this maven-goal or this ant-task
may be completed as if the tex source directory does not exist or is no directory or if
a failure occurs which indicates that the underlying system does not work properly,
as if the tex source directory or a subdirectory is not readable or if execution of an
external program fails. The latter does not mean that the program returns with
an error code, but it means that execution from within java fails.

Identifier Message
Explanation
TEX01 Error running $command.

7.1. EXCEPTIONS 161

Compare with EEX01 in Table 7.9: Error execution means

• the file expected to be the working directory does not exist or is not a
directory.

• method Runtime.exec(String, String[], File) fails throwing an
IOException.

• an error inside systemOut parser occurs

• an error inside systemErr parser occurs

• Wrapping an InterruptedException on the process to be executed
thrown by Proces.waitFor().

whereas for EEX01 just a failure code is returned.
Table 7.3: The BuildFailureExceptions of the class
CommandExecutorImpl

Identifier Message
Explanation
TSS01 The tex source directory '$texSrcDirectoryFile'

should be an existing directory, but is not.
The tex source directory is given in the pom/build-file with default value
./src/site/tex. It contains or is $texSrcProcDirectoryFile. Thus is must
be a directory.
TSS02 The tex source processing directory '$texSrcProcDirectoryFile'

should be an existing directory, but is not.
The tex source processing directory is given in the pom/build-file relative
to $texSrcDirectoryFile with default value .. It contains all files to be
processed. Thus is must be a directory.
TSS03 The output directory '$outputDirectory'

should be a directory if it exists, but is not.
The output directory is given in the pom/build-file with default value
./target/site/.. The output directory is where the result of the goal/-
task are copied to. If it does not yet exist, it is created but if it exists and is a
regular file, it cannot be created anymore.
TSS04 The target set '$targetsStr'

contains the invalid target '$targetStr'.

162 CHAPTER 7. EXCEPTIONS AND LOGGING

Indicates that a target $targetStr in a target set given in a context $context
is unknown, e.g. because it is misspelled. The context is either the setting
$targets or the target set in a chunk of setting $docClassesToTargets or in
a magic comment specifying $targets.
For a description of the settings see Table 6.1 on page 126. See also the
Exception TSS11 in this table.
For each target, there is an according goal and so it can be given on the
command line as e.g. via mvn latex:pdf and also in this case, the validity of
the target is checked, so that e.g. mvn latex:invalid throws an exception,
but the mechanism relies directly on maven’s ability to check the targets of
this plugin.
TSS05 The excluded converters '$convertersExcluded'

should form a subset of the registered converters '…'.
From the possible “registered” converters the ones not used may be excluded
to avoid that they cause errors when trying to check correctness of version in
target vrs accessed via mvn latex:vrs. These converters may not even be
installed.
TSS06 Tried to use converter '$convStr'

although not among the registered converters '…' as expected.
Only registered converters may be used.
TSS07 Tried to use converter '$convStr'

although among the excluded converters '…'.
Among the registered converters only those may be used, which are not excluded,
i.e. listed in configuration in section convertersExcluded.
TSS08 Tried to use converter '$convStr'

in configuration '…' instead of configuration '…'.
Each converter may occur in a specified configuration only. So e.g. lualatex
is only allowed in configuration ’latex2pdfCommand’. If used in configuration
’makeIndexCommand’ this causes this exception, because in that configuration,
e.g makeindex is allowed.
TSS09 The diff directory '$diffDirectoryFile'

should be a directory if it exists, but is not.
The $diffDirectoryFile shall exist and be a directory. In it shall be stored
the artifacts the actually created shall be compared with if chkDiff is set using
the command diffPdfCommand. As the name suggests, currently only pdf-files
are compared.
TSS10 Specified unregistered converter '$convStrProper'

with invalid category '$catStr'; should be '…'.
The converter convName is specified in the setting <catCommand> in the form
convName:notCat with category notCat not coinciding with cat as required.
TSS11 The target set '$targetsStr' in $context

repeats target '$target'.

7.1. EXCEPTIONS 163

Indicates that a target $targetStr in a target set given in a context $context
is repeated, despite sets contain elements only once. The context is either the
setting $targets or the target set in a chunk of setting $docClassesToTargets
or in a magic comment specifying $targets.
For a description of the settings see Table 6.1 on page 126. See also the
Exception TSS04 in this table.
TSS12 Invalid mapping '$chunk' of document classes to targets.
Indicates that the chunk $chunk in parameter docClassesToTargets is syn-
tactically not allowed.
For a description of the syntax see Table 6.1 on page 126.
TSS13 For document class '$cls' target set is not unique.
Indicates that in parameter docClassesToTargets a class defines its targets
more than once.

Table 7.4: The BuildFailureExceptions of the class
Settings

Id. Message
Explanation
TMI01 Cannot get stream to file '$fileName'.
Stream to file within jar. This may be the manifest file, pom.properties or
git.properties.
TMI02 Cannot load properties from file '$fileName'.
Provided the stream to the file is ok, could not load property. This may occur
for pom.properties or git.properties.
TMI03 IOException reading manifest.
Provided the stream to the manifest file is ok, could not read completely.

Table 7.5: The BuildFailureExceptions of the class
MetaInfo

Id. Message
Explanation
TFU01 Cannot create destination directory '$targetDir'.
This is mainly because of writing permissions.
TFU04 Cannot overwrite directory '$destFile'.
Because this plugin shall not turn directories into regular files and vice versa.
This failure indicates that another plugin/task disturbs this one.
TFU06 Cannot copy file '$srcFileName' to directory '$targetDir'.

164 CHAPTER 7. EXCEPTIONS AND LOGGING

This is mainly because of writing permissions.
Table 7.6: The BuildFailureExceptions of the class
TexFileUtilsImpl

Id. Message
Explanation
TLP01 Artifact '$pdfFileAct' from '$texFile' could not be reproduced.
Processing $texFile yields $pdfFileAct which is not “alike” the stored version.
Currently, that kind of check can be performed for PDF files only. Also, the
diff check is executed only if parameter $chkDiff described in Section 6.13
is set. Then the diff command $diffPdfCommand is performed to determine
whether the artifacts are equivalent in the sense given by the diff command.
The concrete meaning of that equivalence may range from strict equivalence to
some kind of visual equivalence.
TLP02 Add file '$pdfFileCmp' to compare with artifact '$pdfFileAct'!
The PDF file $pdfFileCmp expected for comparison with the PDF file
$pdfFileAct created from a LATEX main file does not exist. It is expected only
if a diff check is configured according to $chkDiff described in Section 6.13.
This warning is normal if the document is added newly. Then just copy the
created PDF file (maybe preserving modification time) after quality check.
This warning is also normal if a document is actively modified. Then before
building the file $pdfFileCmp shall be removed before compilation to force this
software to assign a new timestamp, e.g. into first page and metadata.
Currently, that kind of check can be performed for PDF files only.
TLP03 Failure while writing file '$fileName' or closing in-stream.
Failure while performing goal inj while writing file ’$fileName’ or closing
in-stream. The file is created from a template replacing parameter names by
their actual values. A reason may be that the template cannot be read or
its in-stream cannot be closed. The result is written into the latex source
directory.

Table 7.7: The BuildFailureExceptions of the class
LatexProcessor

FIXME: to be added.

7.2 Logging of warnings and errors
The rules for logging warnings and errors is, that the user must be notified, if
something went wrong, but the run is not aborted, by a warning or an error. It is

7.2. LOGGING OF WARNINGS AND ERRORS 165

not required that for each detail going wrong, there is a separate notification, but
the user must be sure, that all is ok, if no warning and no error occurs.

To decide whether it is an error or a warning to be logged, one has to distinguish,
whether the problem occurs when running an external application or within internal
code. In the first case, the decision whether it is an error or a warning is left to
that application:

• If the application returns an error code other than 0, it is an error.

• If the application is expected to write a log file, but none is found, it is an
error. The applications used here, return a nontrivial error code if no log file
is written.

• The applications used here, writing a log file distinguish between error and
warning. If a log file is written both are logged in the log file and can be
distinguished by the form of the entry via pattern matching. If no error
occurs, the return code is 0, even if warnings occur.

• If an application writes at least one error into the log file, this software logs
an error.

• If an application writes no error into the log file but at least one warning,
principally this software logs a warning. There may be parameters to switch
off warnings partially or all of them, but there must be also a configuration
of parameter values that allow logging all warnings.

If an application does not create the expected output file, this software logs
an error. This may be because of an internal error as described above, but also
because of wrong parameters. So, e.g. lualatex -v xxx.tex does not create a
pdf-file as expected.

Id. Message
Explanation
EEX01 Running $command failed with return code $returnCode.
Compare with TEX01 in Table 7.3: Error execution means that there is even
no valid return code.
EEX02 Running $command failed: No target file '$fileName' written.

FIXME
EEX03 Running $command failed: Target file '$fileName' is not updated.
The command $command is expected to write to the file ’$fileName’ but this
file is not updated. This indicates an error executing $command.
WEX04 Cannot read target file '$fileName'; may be outdated.

FIXME

166 CHAPTER 7. EXCEPTIONS AND LOGGING

WEX05 Update control may emit false warnings.

FIXME
EAP02 Running $command failed: No log file '$logFileName' written.
The command $command is expected to write a log file ’$logFileName’ but no
such file exists. This indicates an error executing $command.
EAP01 Running $command failed. Errors logged in '$logFileName'.
The command $command logged at least one error in the file ’$logFileName’,
where more details can be found.
WAP03 Running $command emitted warnings logged in '$logFileName'.
The command $command logged at least one warning in the file ’$logFileName’,
where more details can be found. Note that if $command is a latex processor,
this warning comes only iff the parameter $debugWarnings is set. Note also
that notifications on bad boxes are not counted as warnings here.
WLP03 Running $command created bad boxes logged in '$logFileName'.
Here, $command is a latex processor. It logged at least one bad box, overfull or
underfull, horizontal or vertical in $logFileName where more details can be
found. Note that this warning comes only iff the parameter $debugBadBoxes
is set.
WLP06 Running $command found issues logged in '$logFileName'.
This warning does no longer occur. The following is the original
explanation: Here, $command is a checker tool. Strictly speaking, unlike the
other warnings here, this does not signify that running $command went wrong
but uncovered an issue (warning/error/message) logged in a file.
WLP05 Use package splitidx without option split in $texFileName.
This indicates that an extended idx-file “xxx-yy.idx” has been found without
xxx.idx or without according entry \indexentry[yy]{…}{…} in xxx.idx.
WLP07 Found both '$dviFile' and '$xdvFile'; convert the latter.
This indicates that for conversion to PDF there are a DVI-file and a XDV-file
which may come from mixed application of xelatex and another converter. In
this case, the $xdvFile is converted.

Table 7.8: The errors and warnings on running a command

Id. Message
Explanation
WFU01 Cannot read directory '$dir'; build may be incomplete.

FIXME
WPP02 Cannot read tex file '$texFile'; may bear LATEX main file.

FIXME
WAP04 Cannot read log file '$logFileName'; may hide warnings/errors.

FIXME
WLP02 Cannot read log/aux file '$logFileName'; $kind may require rerun.

7.2. LOGGING OF WARNINGS AND ERRORS 167

FIXME
WLP04 Cannot read idx file '$idxFileName'; skip creation of index.

FIXME
WFU03 Cannot close '$closeable'.

FIXME
WFU04 Could not assign timestamp to target file $file.
Currently NOT USED!
The former explanation was as follows If either the parameter ’$chkDiff’ de-
scribed in Table 6.13 on page 154 is set or the magic comment chkDiff
described in Section 3.1.1.2 occurs, then the modification time of target files
must be set explicitly. In this situation, this warning occurs if setting the
modification time could not be set.
EFU05 Cannot delete file '$delFile'.

EFU06 Cannot move file '$fromFile' to '$toFile'.

FIXME
Table 7.9: The errors and warnings on files/streams

Id. Message
Explanation
WPP03 Skipped processing of files with suffixes $skipped.

FIXME
WPP04 Skip processing $srcFile: interpreted as target of $lmFile.

FIXME
WPP05 Included latex files which are not LATEX main files:

$includedNotMainFiles.
In parameter mainFilesIncluded only LATEX main files shall be mentioned.
The above message shows files specified which are not recognized as LATEX
main files. This is also affected by parameter patternLatexMainFile.
WPP06 Excluded latex files which are not LATEX main files:

$excludedNotMainFiles.
In parameter mainFilesExcluded only LATEX main files shall be mentioned.
The above message shows files specified which are not recognized as LATEX
main files. This is also affected by parameter patternLatexMainFile.
WPP07 Included/Excluded LATEX main files not identified by their name:

$inclExcl.
This indicates that there are different LATEX main files with the same name (of
course in different directories) and that $inclExcl are those given in parameter
mainFilesIncluded or mainFilesExcluded.
WLP01 LaTeX requires rerun but maximum number $maxNumRerunsLatex reached.

168 CHAPTER 7. EXCEPTIONS AND LOGGING

FIXME
ELP01 For command '$command' found unexpected return code $returnCode.
Here, $command is a checker tool. The return codes are determined by reverse
engineering. So possibly $returnCode cannot be interpreted.
ELP02 Checker '$command' logged an error in $clgFile.
Indicates that the checker found an error. Note that errors are warnings
declared explicitly as errors. There is also the case that warnings are declared
as simple messages and thus causes neither a warning nor an error.
WLP08 Checker '$command' logged a warning in $clgFile.
Indicates that the checker found a warning. Implicitly it means that no error
was found since this would cause EPL02. Note that warnings can be declared
as simple messages and thus cause neither a warning nor an error.
WLP09 For file '$texFile' targets are neither specified by magic comment

nor restricted by document class '$docClass'.
Indicates that the LATEX main file $texFile has neither a magic comment spec-
ifying the targets nor for the document class parameter docClassesToTargets
described in Table 6.1 specifies the allowed targets. Since no restriction on
targets are known, $texFile is compiled for all targets given in $targets
given also in Table 6.1. To avoid this warning, just add $docClass to
docClassesToTargets or specify targets by magic comment.
WLP10 Degraded identifier for '$file';

augmented risk not to rerun although necessary.
Indicates that an auxiliary file $file which is used to determine whether
an auxiliary program shall be rerun could not be completely evaluated. An
example of an auxiliary file is an IDX file. If it changes not only makeindex
but also the LATEX compiler need to be rerun.
A special kind of auxiliary files are AUX files. They may be used to create
bibliographies or glossaries. They are special in that they may include other
AUX files, namely those corresponding with included TEX files. In this case,
$file is the top level AUX file.

Table 7.10: Miscellaneous errors and warnings

FIXME: to be added.

Chapter 8

Gaps

This chapter collects some gaps, but not all and sorts them into categories.

8.1 Gaps in graphics
Only figures created with xfig and stored as files PDF and PTX may be integrated
into a LATEX document. This could be extended to a broader variety of export file
formats. The problem is, that fig-files to not contain information on the export
format. This has to be either given elsewhere in a config file or determined by
pre-parsing the TEX files.

There is no support for pictures in GIF (Graphics Interchange Format, allows
also animations)-format but maybe a converter to PNG is all needed.

8.2 Build mechanism
There is no proper make-mechanism taking dependencies into account. Thus, all
documents in all formats specified are remade, whether they changed or not.

Also, if more than one target is created from one LATEX source, common steps
are redone for each target. E.g. if PDF and HTML are created, PDF creation is
done twice and if PDF, HTML, ODT and DOCX are created, ODT is done twice
(once for ODT second for DOCX) and PDF is done even trice: once for pv itself,
once for ODT and once for DOCX.

8.3 Indices
Creating more than one index is supported only via package splitidx in conjunc-
tion with SplitIndex. There are the following packages also supporting multiple

169

170 CHAPTER 8. GAPS

indices but not supported officially: index described in [Jon95], amsmidx described
in [Bee07] and imakeidx described in [Gre16]. Note that the package multind is
obsolete.

8.4 Glossaries
According to [Tal24b], Section 1.3, there are various options to create a glossary,
whereas this software supports option two only described in Section 1.3.2, which
uses makeindex for indexing. Currently, indexing with xindy is not supported.
The last two options are available only with package glossaries-extra which
this software will support in later versions.

By default, package glossaries creates a single “main glossary”, which can be
switched off specifying the option nomain described in Section 2.6. In this case at
least, more specific glossary types must be specified. This can be done by options
like acronyms described in Section 2.7 or the symbols, numbers or index options
described in Section 2.9. As the index option collides with indexing as performed
by this software, the option index is not allowed.

The package glossaries itself supports new glossary types via the command
\ newglossary [log−ext] { name}{ in−ext }{out−ext }{ t i t l e } [counter]

described in [Tal24b], Section 9. In fact, the glossary types accessible via options
and even the main glossary are defined internally that way.

Although the glossary algorithm of this software, in particular rerun manage-
ment as described in Section 5.6 can create any kind of glossaries created with
\newglossary, and it can also clean up files created in conjunction with glossaries
as long as the file endings do not contain “.”, defining new glossary types is not
recommended because latexmk cannot mimic this with a fixed .latexmkrc file,
neither in creation rules nor in patter for files for deletion and because collision,
e.g. with indexing, cannot be excluded.

Reading [Tal24b], Section 13.1, the glossary option index seems to allow creating
indices through the glossaries package making any index-package obsolete. This
software does not support that technique offered by the package glossaries.

For development given the LATEX main file xxx.tex, the files xxx.pdf, xxx.pdf,
xxx.synctex.gz and xxx.log are vital. Thus, it would be fine to have a goal
which touches these files or to have a parameter to touch these prior to creation
to avoid that these are cleaned up after the run. This is an alternative to setting
parameter cleanup to false. On the other hand, goal grp creating graphics in
conjunction with a development tool like vscode, allows to compile a LATEX main
file in that tool and thus to access xxx.log and xxx.pdf.

There are lots of possible improvements to be done on the goal check.

8.4. GLOSSARIES 171

The ant-task does not allow creating single formats, e.g. pdf selectively.
The ant-build is not completed: tests are not run and test runs are no prerequi-

site for installation.
This manual is not finished. To test the overall functionality of the maven-plugin

and of the ant-task described here, this manual is created through plugin and task.
Support for djvu via pdf2djvu: pdf2djvu -o output_file input_file
pdf2dsc (ps with document structuring convention)
pdf2svg is not so useful.
pdftohtml -c is also not bad,
consider also pdftocairo for creation of tiff and ps and many others.

172 CHAPTER 8. GAPS

Chapter 9

Bugs

Seemingly, indices and glossaries based on page numbers (there seems to be an
alternative to this), may be out of date with the current algorithm: First lualatex
(or some other LATEX engine) is run to create the raw index. Then a sorting program
like makeindex is called which creates the sorted, collected and formatted index.
Then one lualatex run is required to include this index into the created pdf-file.
A second lualatex run is required to write the index to the table of contents, as
typically required. The problem with this procedure is, that the subsequent runs
of lualatex change the raw index which requires rerunning makeindex and after
that again lualatex.

One way to solve that problem is to use the package imakeidx (improved
makeidx) instead of the traditional package makeidx. This offers also multiple
indices, which is another gap to be filled. Seemingly, imakeidx does not support
glossaries and so for these, another solution is required, although the problem is
the same.

Packages robustindex and robustglossaries offer another solution. The
advantage would be to have handled both index and glossary. Also support of
hyperrefs within indices and glossaries seem to be expanded. On the other hand,
the two packages seem experimental and seem to play with package hyperref.

The current implementation is based on package rerunfilecheck which works
for index but not for glossary.

Check whether glossaries option autorun makes sense. Seems to run the
command makeglossaries after each latex run. But how to find out whether to
rerun latex???

Pattern to identify LATEX main files: Documentation: shall not include the
environment documentclass/documentstyle in an input. Also check whether
command RequiresPackage makes sense and check whether (re)newcommand is
possible or makes sense.

Maybe there is a bug in the number of reruns: I think, makeglossaries is like

173

174 CHAPTER 9. BUGS

bibtex needing two latex reruns and not like makeindex, which requires a single
rerun.

Since this software heavily relies on rerunfilecheck, maybe a warning if not
used is a good idea.

Figures are missing in html output Formulae are missing in html output. Index
is s missing in html output. Glossary occurs in the toc but is not numbered.

Did not find a way to add a numbered entry for the glossary into the table of
contents.

The pattern (!) detects an error only -no-file-line-error (which is the
default) is set but does not work with option -file-line-error. This yields

./manualLMP.tex:2500: Undefined control sequence.
l.2500 \bla

instead of

! Undefined control sequence.
l.2500 \bla

I ask myself how to detect this error in file line error mode!
Pattern matching is line-wise. This is inappropriate for patternLatexMainFile

but also for further patterns like multiline-warnings.
Also there seems to be a bug in java’s regex package, which leads to non-

termination: pattern (̃\s*)*xx seems not to terminate.
A problem is also that the ending “.svg” may occur as a source and as a target

file of htlatex. Thus mvn latex:clr tries to delete the targets of the svg-files,
although these are not sources but themselves targets.

A way to solve this problem is, to apply the delete pattern to graphic source
files and the files created. CAUTION: for svg, the files created by the latex run
shall be taken into account. A warning shall be issued for each matching.

Target html: references to figures are missing. jpg and png-pictures oddly
represented. With option svg: problem. Leave away, then at least the formula
occurs. But then, from the mixed pictures only the text occur, whereas the pdf is
still missing. Maybe htlatex still relies on eps-format. Table is very wide. Umlauts
and sz maybe also not properly represented.

Still for target html: currently all aspects making problems are deactivated:
Figures, index and glossary. For the index have a look at the log-file. These aspects
must be re-integrated as soon as possible.

For html: run package tex4ht with option info to obtain further options and
their descriptions. Also add a proper description into this manual.

For files .directory (“.” first), the separation of root and suffix does not work.
Maybe the best to ignore files like that.

175

Target txt: seems as if index and glossary not up to date.
target pdf: Idea to run makeglossaries always prior to lualatex.
Maybe this is more a gap than a bug: support for dvi-creation should be

provided separately.
For target dvi, neither png nor jpg-pictures are included. The other formats

work with $pdfViaDvi set. Note that the postscript-files must be in the same
directory as the dvi, probably because it includes them only by link.

For the other case, $pdfViaDvi unset, this requires some research.
Also for creation of the txt-format, $pdfViaDvi must be set.
FIXME: on bibliography, index and glossary
The application chktex does not necessarily return an error code if something

goes wrong, e.g. reading -l chktexrc. Thus only in debug mode one can recognize
the misbehavior. This knocks out detection of build failures.

Also I would like to replace the global chktexrc by a local version, via ‘-g0 -l
chktexrc.my’. The problem is, that the file is interpreted relative to the working
directory.

The application chktex has an option -I to specify, whether input files shall be
read. If not, creation of graphics is immaterial. I can also imagine, that one wants
to configure, whether graphics shall be created or not.

It may make sense to define in chktexrc another verbosity level with format
allowing to decide whether there is a warning/error/message. Now I modified the
levels that all but the headlines start with blank. This makes it easy in -v1 and in
-v2 to detect warning/error/message at the beginning of a line, without the risk of
false error because a message is logged on a text starting with the word “error”.

Maybe this is not a bug but an inconsistency between AUCTEX and local config:
Running with the plugin, e.g. with pdflatex, we obtain
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014) (preloaded format=pdflatex 2014.8.9) 30 JAN 2017 10:58
entering extended mode
\write18 enabled.
Source specials enabled.
%&-line parsing enabled.
**test.tex
(./test.tex

whereas running from within Emacs with AUCTEX we obtain
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014) (preloaded format=pdflatex)
restricted \write18 enabled.
entering extended mode

and also the behavior is slightly different, e.g. on file
\documentclass{article}
\begin{document}
äö¿

\end{document}

The parameter patternReRunLatex treated in Section 6.5.3 needs more careful
investigation. This is done to some extent in class org.m2latex.core.Settings.

176 CHAPTER 9. BUGS

Chapter 10

Preferred usage, Test Concepts
and Tests

This software may be used in different environments, is highly configurable and
also there is a huge amount of packages potentially in use.

In order not to get lost in extensive tests for covering all and everything, the
author applies the notion of preferred usage. This is essentially the way the author
uses this software. This is also what is tested extensively. Other ways of usage are
supported insofar as reported bugs are fixed in general, but since explicit tests lack,
the quality is lower for these cases.

The preferred usage is defined as follows:

• Linux, to be more precise, SuSE tumbleweed. The author used this software
frequently and always with success on Windows also. As a shell use git shell.

• LATEX Distribution TEX Live, to be more precise the SuSE specific variant.
In the long run MiKTeX must be at least tried also. As MiKTeX is available
for Linux also, test will be under Linux.

• VS Code with the extensions installed by instVScode4tex.sh which is
described in Section 3.5.5, and the viewer okular. This is defined here,
although not going into the artifacts.

• The VS Code extension james-yu.latex-workshop, which is installed by
instVScode4tex.sh is used only with build recipe latexmk (latexmkrc).

• The maven plugin, rather than the ant task.

• Configuration is the default setting of this plugin. In particular, the latex
processor is lualatex.

177

178 CHAPTER 10. PREFERRED USAGE, TEST CONCEPTS AND TESTS

• If latexmk is used, then with config file .latexmkrc, whereas chktex is
definitely used, and it is configured with config file .chktexrc. Both config
files are injected by inj described in Section 3.5.1.

• Neither latexmk nor chktex run from the command line is used with options.
This is the default option list for latexmk but not for chktex.

• Compilation with latexmk but not by setting which is by default

<latexmkUsage>NotAtAll</latexmkUsage>

but activated by the magic comment

% !LMP latexmk

• Reproducibility checks both by setting although is by default

<chkDiff>false</chkDiff>

and also activated by the magic comment

% !LMP chkDiff

Note that this is exceptional in that the preferred usage deviates from the
defaults: Tests are based on reproducibility check setting chkDiff to true and
there are many internal projects where reproducibility checks are selectively
triggered by the magic comment.

• Document classes according to preferred usage which is by default are book,
article, beamer, leaflet, scrlttr2 and minimal. For beamer documents,
preferred usage are both, the presentation and the handout as described
in Section 3.1.1.1. Note that, unlike most other aspects of preferred usage,
this is not tested through this manual but with the beamer presentation
and handout given by [Rei23a]. Also, the test for leaflet class is tested by
document [Rei24a] and the test for the letter class is tested in [Rei24b]. The
minimal document checking the according document class has no reference.
Caution: Currently, the classes letter and report are not preferred usage,
but the latter is accepted with default configuration without warning. In the

179

long run, the manual shall be a report, whereas there shall be a user guide
which shall be a book.
Among the document classes provided by KOMA script described in [Koh23],
only scrlttr2 is preferred usage. It replaces letter.

• LATEX packages are those given by header.tex described in Section 3.5.2.

• Graphics are in the formats described and used in the manual.

• Using tools pythontex, makeindex, splitindex, makeglossaries belongs to the
preferred usage. This does not mean that these tools must be used, but it
means that the usage is restricted to these tools, not taking graphics into
account.

• Tools must be used with accepted version, in the sense that mvn latex:vrs
does not emit a warning.

• The output format is PDF.

• Security issues are addressed by including a header described in Section 3.5.4.

It is the “founded conviction” of the author, that in most of the use cases,
restriction to the preferred usage is possible but when deviating, there is some
increased risk that there is a bug in this LATEX builder.

The set of documents coming with this software are compiled sticking to the
preferred usage. Above all, this manual [Rei] not only describes all vital features,
but also uses them, with one big exception: Its document class is book, and it
cannot have other document classes of course. Most other documents are articles
and [Rei23a] refers to a presentation with class beamer and to the according handout
which is again an article. So the build process for these documents altogether cover
the preferred usage to a wide extent. Thus, a bug in this LATEX builder is likely to
be reflected in a deficiency in the compiled version of one of these documents.

This shows that testing the compiled documents is a reasonable test strategy.
It is not feasible to do this manually for whole documents, and it is also technically
close to impossible to do it automatically. What can be checked automatically is
coincidence with the last document.

So the strategy is to either change the (source of the) software or the source
of the documents, but never both at once. If the software is changed, the created
documents must persist. Changes in the manual are locally in the sources and
result in local changes in the compiled document, because the software was not
changed. Thus, the compiled document can be checked manually. Since the only
output format being part of the preferred usage is PDF, only compilations into
PDF must be taken into account.

180 CHAPTER 10. PREFERRED USAGE, TEST CONCEPTS AND TESTS

Section 5.8 describes how this LATEX builder can perform an equality check
on PDF documents. There, both Section 6.13 on parameters for equality check
is referenced and Table 7.7 comprising build failures if the documents do not
coincide. We highlight the parameter chkDiff which determines whether the check
is performed and build failures TLP01 thrown if the documents differ. In tests,
chkDiff is set true, the default is false.

Although this test concept seems appealing, it is not always easy to realize.
Before explaining the difficulties, let us differentiate between the two ways the

pom of this plugin uses this plugin itself. The pom for performing tests is based
on pom4pdf.xml, not on the actual pom.xml of the project a version of which
is on github. For pom4pdf.xml, the current version is determined by filtering,
which remains correct even during the release process. In addition, the project
pom.xml used for development contains another, explicit dependency to latex-
maven-plugin. This one is used for creating the documents for the site and also for
developer tests. Thus, during development pom.xml is kept close to pom4pdf.xml,
and it has a snapshot version x.y.0-SNAPSHOT.

Let us first consider the case of development in which the version of this
plugin is a SNAPSHOT version. Then tests refer to the (snapshot) version under
consideration. If a change is made to the documents and all tests pass, the changed
documents are compiled with current software, and go into the next snapshot
deployed. To be precise, the documents are compiled with deployed software, which
is equivalent with the software compiled from the current sources.

If in contrast the software is changed, keeping the manual unchanged, then
still compilation of the documents and also check is performed with the deployed
version of this latex-maven-plugin. So, to decide whether the documents remain
the same after the software change, a second build must be performed, because
this compiles with the newly deployed snapshot of this software.

The situation is even more complicated if development is finished for the current
version and a new release must be built. As is state of the art, for this task the
maven-release-plugin is used. It requires for sake of reproducibility, that the
pom of the project, not the pom has dependencies and plugins only in release
versions, no snapshot versions.

As is state of the art, for release the maven-release-plugin is used. Whereas
it has no explicit restrictions on the pom for tests pom4pdf.xml, it requires for
sake of reproducibility, that the pom of the project pom.xml has dependencies and
plugins only in release versions, no snapshot versions. This applies also to this
plugin. For development, it has version x.y.0-SNAPSHOT to deploy x.y.0, and this
is also the version one wants to create a site with, but this is the one to released
at present. A possible fallback is always to deactivate the usage of this plugin.
As a consequence, later a version x.y.1 shall be released, which uses x.y.0 for

https://www.simuline.eu/LatexMavenPlugin/fromMain/pom4pdf.xml
https://github.com/Reissner/latex-maven-plugin/tree/master/maven-latex-plugin

181

site creation. Better is to use the last release version and to configure it so that
the documents can be compiled with the old version. This may require a creative
release planning, including features used to compile documentation and maybe a
change in the parameters or some other change in the environment, which must be
compensated in later releases also.

Let us give examples of creative realizations of the described test concept
relying on thorough release planning. To release 2.0.0 starting with the prior
version 1.8.0, almost only injections are added. These can be done manually using
2.0.0-SNAPSHOT. Then the injected files are checked in into version control and
then the documentation can be compiled with old version 1.8.0 with the same
result. In a release 2.0.1, version 1.8.0 can be replaced by 2.0.0.

For version 2.1.0 it is planned, that this plugin can use latexmk, and in the
manual this is also described. In 2.1.0-SNAPSHOT the manual may be compiled
using latexmk, but nevertheless, in 2.1.0 the manual is still compiled without
latexmk, using release 2.0.0 for creating the manual for the site. Only in 2.1.1,
also the manual is included in the site using latexmk.

For version 2.2.0 it is planned, to support bib2gls directly. Observe that
2.1.0 supports can treat bib2gls via latexmk, but without all the monitoring
2.2.0 offers with direct support. Of course, the manual describes direct support
and some 2.2.0-SNAPSHOT is able to compile the manual using bib2gls directly.
Nevertheless, close to release for site creation, 2.1.0 is used again relying on
latexmk to invoke bib2gls. In 2.2.1 then 2.2.0 can be used for site creation
invoking bib2gls directly.

Note that the test concept based on preferred usage has a considerable weakness:
It cannot test warnings, errors and exceptions because they are not preferred usage.
On the other hand, it is an important design goal, that the result of this software
is trustable if no warning, error or exception occurs. This requires extensive tests
also on imperfect runs. These must be supplemented in the future.

FIXME: this chapter describes the tests to be performed.
Missing are tests on logging, tests on various input formats, output formats,

tests including several paths defined by invocation of auxiliary applications for
index, glossary, …

182 CHAPTER 10. PREFERRED USAGE, TEST CONCEPTS AND TESTS

Chapter 11

Bibliography

[Aa08] Ola Andersson and al. Scalable Vector Graphics (SVG) Tiny 1.2 Spec-
ification. Technical report, W3C, https://www.w3.org/TR/SVG/, 12
2008.

[Ars09] Donald Arseneau. The import package. asnd@triumf.ca, 3 2009. This
manual corresponds to import v5.1, dated 23-Mar-2009.

[BB24] Javier Bezos and Johannes L. Braams. Babel User guide, 1 2024.

[Bee07] B. Beeton. The amsmidx package. American Mathematical Society,
https://www.ctan.org/pkg/amsmidx, version 2.02 edition, 9 2007.

[BLC+14] J. Braams, L. Lamport, D. Carlisle, F. Mittelbach, R. Schöpf, A. Jeffrey,
and C. Rowley. Standard LATEX 2ε packages makeidx and showidx. LATEX
Project, https://ctan.org/pkg/makeidx?lang=en, 9 2014.

[Car98] David Carlisle. The longtable package, v4.09 edition, 5 1998.

[Car16] D. P. Carlisle. Packages in the ‘graphics’ bundle. https://www.ctan.o
rg/pkg/graphicx, 5 2016. The LATEX3 Project.

[Col23] J. Collins. latexmk - generate latex document. available at https:
//ctan.org/pkg/latexmk/?lang=en, 4 2023.

[Cré11] J. Crémer. A very minimal introduction to TikZ. https://cremer
online.com/LaTeX/minimaltikz.pdf, 3 2011. Toulouse School of
Economics jacques.cremer at tse-fr.eu.

[Da11] Erik Dahlström and al. Scalable Vector Graphics (SVG) 1.1 Specification.
Technical report, W3C, https://www.w3.org/TR/SVG/, 8 2011.

183

https://www.w3.org/TR/SVG/
https://www.ctan.org/pkg/amsmidx
https://ctan.org/pkg/makeidx?lang=en
https://www.ctan.org/pkg/graphicx
https://www.ctan.org/pkg/graphicx
https://ctan.org/pkg/latexmk/?lang=en
https://ctan.org/pkg/latexmk/?lang=en
https://cremeronline.com/LaTeX/minimaltikz.pdf
https://cremeronline.com/LaTeX/minimaltikz.pdf
https://www.w3.org/TR/SVG/

184 CHAPTER 11. BIBLIOGRAPHY

[DHH02] David Duce, Ivan Herman, and Bob Hopgood. Svg tutorial. Technical
report, Oxford Brookes University, W2C, 2002.

[Fea16] Simon Fear. Publication quality tables in LATEX. 300A route de Meyrin,
Meyrin, Switzerland, v1.618033 edition, 4 2016.

[Ghe19] Ovidiu Gheorghieş. MetaUML: A Manual and Test Suite, 2 2019.

[GNS20] H. Gäßlein, R. Niepraschk, and W. Schmid. The document class leaflet,
11 2020.

[Grä96] George Grätzer. Math into LATEX. Springer Science, New York, 1996.

[Gra22] N. Gray. The showlabels package. https://nxg.me.uk, 7. 2022.

[Gre16] E. Gregorio. The package imakeidx. https://www.ctan.org/pkg/ima
keidx, v1.3e edition, 10 2016. Enrico.Gregorio@univr.it.

[Hec05] A. Heck. Learning MetaPost by doing, 2005. https://staff.fnwi.u
va.nl/a.j.p.heck/Courses/mptut.pdf.

[HH13] T. Henderson and S. Hennig. A Beginner’s Guide to MetaPost for
Creating High-Quality Graphics, 6 2013. https://www.tug.org/docs
/metapost/mpintro.pdf.

[HMH15] Jobst Hoffmann, Brooks Moses, and Carsten Heinz. The Listings
Package. j.hoffmann(at)fh-aachen.de, v1.6 edition, 6 2015.

[Hob24] John D. Hobby. MetaPost, a user’s manual, 2 2024. for version 2.10,
https://www.tug.org/docs/metapost/mpman.pdf.

[Ilt12] Philip Ilten. The svg Package, v1.0 edition, 9 2012. philten@cern.ch.

[ISO20] ISO. Document management – Portable document format – Part 2:
PDF 2.0, 2 edition, 12 2020.

[JM15] Alan Jeffrey and Frank Mittelbach. inputenc.sty. The LATEX project,
http://latex-project.org/, v1.2c edition, 3 2015.

[Jon95] David M. Jones. A new implementation of LATEX’s indexing commands.
https://www.ctan.org/tex-archive/macros/latex/contrib/index?lang=en,
v4.1beta edition, 9 1995.

[Ker16] Uwe Kern. Extending LATEX’s color facilities: the xcolor package. www.ukern.de/t
ex/xcolor.html, xcolor@ukern.de, v2.12 edition, 5 2016.

https://nxg.me.uk
https://www.ctan.org/pkg/imakeidx
https://www.ctan.org/pkg/imakeidx
https://staff.fnwi.uva.nl/a.j.p.heck/Courses/mptut.pdf
https://staff.fnwi.uva.nl/a.j.p.heck/Courses/mptut.pdf
https://www.tug.org/docs/metapost/mpintro.pdf
https://www.tug.org/docs/metapost/mpintro.pdf
j.hoffmann(at)fh-aachen.de
https://www.tug.org/docs/metapost/mpman.pdf
http://latex-project.org/
https://www.ctan.org/tex-archive/macros/latex/contrib/index?lang=en
www.ukern.de/tex/xcolor.html
www.ukern.de/tex/xcolor.html

185

[Koh16] M. Kohm. Creating More Than One Index Using splitidx and SplitIndex. https:
//www.ctan.org/pkg/splitindex?lang=en, v1.2c edition, 2 2016. ko-
mascript@gmx.info.

[Koh23] Markus Kohm. Die Anleitung KOMA - Script, 6 2023. Refers to KOMA-script
versions 3.36 and 3.37.

[Kwo88] C. Kwok. EEPIC Extensions to epic and LATEX Picture Environment Version 1.1.
Department of Electrical Engineering and Computer Science, University of California,
Davis, California, 2 1988. https://www.ctan.org/pkg/eepic?lang=de.

[Lam87] Leslie Lamport. MakeIndex : An Index Processor For LATEX. https://ctan.org/p
kg/makeindex?lang=en Package documentation, 2 1987.

[LRZ] MakeIndex - ein Indexprozessor füer LATEX. https://www.lrz.de Menues: services,
software, textverarbeitung, makeindex.

[Mar09] Nicolas Markey. Tame the BeaST - the B to X of BibTEX. manuscript, 10 2009.
markey@lsv.ens-cachan.fr.

[MF23] F. Mittelbach and U. Fischer. The documentmetadata-support code, 3 2023. A copy is
within the documentation of this software, in fact two documents, documentmetadata-
support-doc.pdf and documentmetadata-support-code.pdf which also comprises the
implementation.

[MFL16] Frank Mittelbach, Robin Fairbairns, and Werner Lemberg. LATEX font encodings.
The LATEX3Project Team, 2 2016.

[Mös98] Peter Mösgen. Makeindex Sachregister erstellen mit LATEX. Katholische Universität
Eichstätt Universitätsrechenzentrum, 5 1998.

[Obe16a] Heiko Oberdiek. The bmpsize package. heiko.oberdiek@googlemail.com, v1.7 edition,
5 2016.

[Obe16b] Heiko Oberdiek. The transparent package, v1.1 edition, 5 2016.

[Obe22] Heiko Oberdiek. The rerunfilecheck package, v1.10 edition, 7 2022.

[Pat88] Oren Patashnik. BibTEXing. manuscript, 2 1988.

[PDF08] Adobe Systems Incorporated 2008. Document management – Portable document
format – Part 1: PDF 1.7, 1 edition, 7 2008.

[Poo] Geoffrey M. Poore. PythonTEX Quick-start. https://github.com/gpoore/pyth
ontex/blob/master/pythontex_quickstart/pythontex_quickstart.pdf.

[Poo15] Geoffrey M. Poore. PythonTeX: reproducible documents with LaTeX, Python,
and more. Computational Science & Discovery, 8(1), 7 2015. doi:10.1088/1749-
4699/8/1/014010.

[Poo17] Geoffrey M. Poore. PythonTEX Gallery. https://github.com/gpoore/pythonte
x/blob/master/pythontex_gallery/pythontex_gallery.pdf, 7 2017.

https://www.ctan.org/pkg/splitindex?lang=en
https://www.ctan.org/pkg/splitindex?lang=en
https://www.ctan.org/pkg/eepic?lang=de
https://ctan.org/pkg/makeindex?lang=en
https://ctan.org/pkg/makeindex?lang=en
https://www.lrz.de
https://github.com/gpoore/pythontex/blob/master/pythontex_quickstart/pythontex_quickstart.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_quickstart/pythontex_quickstart.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_gallery/pythontex_gallery.pdf
https://github.com/gpoore/pythontex/blob/master/pythontex_gallery/pythontex_gallery.pdf

186 CHAPTER 11. BIBLIOGRAPHY

[Poo21] Geoffrey M. Poore. The pythontex package. gpoore at gmail.com, github.com/gpo
ore/pythontex, v1.8 edition, 6 2021.

[Rei] E. Reißner. Manual for the latex-maven-plugin and for an according ant-task, Version
X.Y. The current version is available at http://www.simuline.eu/LatexMavenPl
ugin/manualLMP.pdf.

[Rei16] E. Reißner. The xfig file format for xfig 3.2. see http://www.simuline.eu/LatexM
avenPlugin/xfig/xfigFormat.pdf, 12 2016.

[Rei17] E. Reißner. The DVI-format and the program DVItype. http://www.simuline.e
u/LatexMavenPlugin/dvi/dviFormat.pdf, 1 2017.

[Rei22] E. Reißner. Files, errors and warnings of pythontex 0.18. available at http:
//www.simuline.eu/LatexMavenPlugin/pythontex/pythontexInOut.pdf, 7
2022.

[Rei23a] E. Reißner. Presentation with/of the latex-maven-plugin. presentation available at
http://www.simuline.eu/LatexMavenPlugin/docClasses/useBeamerPres.pdf,
handout at http://www.simuline.eu/LatexMavenPlugin/docClasses/useBeame
rHandout.pdf, 10 2023. Comprises both, presentation and handout.

[Rei23b] E. Reißner. Special and common aspects of pdf/dvi/xdvi generators. http://www.
simuline.eu/LatexMavenPlugin/latex/latexEngines.pdf, 3 2023.

[Rei24a] E. Reißner. Leaflet with/of the latex-maven-plugin. available at http://www.simu
line.eu/LatexMavenPlugin/docClasses/productLeaflet.pdf, 2 2024.

[Rei24b] E. Reißner. A letter on/with the latex-maven-plugin. available at http://www.si
muline.eu/LatexMavenPlugin/docClasses/letter.pdf, 2 2024.

[RO22] Sebastian Rahtz and Heiko Oberdiek. Hypertext marks in LATEX: a manual for
hyperref, 2 2022.

[Sch11] Ulrich Michael Schwarz. The nag package. absatzen, http://absatzen.de/,
ulmi@absatzen.de, 11 2011. corresponds to nag 0.7, dated 2011/11/19.

[Sch14] Joachim Schrod. xindy manual pages. https://github.com/jschrod/xindy.cta
n/blob/master/doc/xindy.pdf, 5 2014. Version 2.5.0.

[Sch16] R. Schlicht. The microtype package. w.m.l@gmx.net, v2.6a edition, 5 2016.

[SGNS20] J. Schlegelmilch, H. Gäßlein, R. Niepraschk, and W. Schmid. The leaflet document
class, 6 2020.

[SMCR15] Walter Schmidt, Frank Mittelbach, David Carlisle, and Chris Rowley. The fix-cm
package. The LATEX Project Team, v1.1t edition, 1 2015.

[SU06] A. Simonic and S. Ulrich. srcltx.sty · srctex.sty. stefanulrich@users.sourceforge.net,
v1.6 edition, 11 2006.

[Sza07] Péter Szabó. The anyfontsize package. pts@fazekas.hu, 2 2007.

github.com/gpoore/pythontex
github.com/gpoore/pythontex
http://www.simuline.eu/LatexMavenPlugin/manualLMP.pdf
http://www.simuline.eu/LatexMavenPlugin/manualLMP.pdf
http://www.simuline.eu/LatexMavenPlugin/xfig/xfigFormat.pdf
http://www.simuline.eu/LatexMavenPlugin/xfig/xfigFormat.pdf
http://www.simuline.eu/LatexMavenPlugin/dvi/dviFormat.pdf
http://www.simuline.eu/LatexMavenPlugin/dvi/dviFormat.pdf
http://www.simuline.eu/LatexMavenPlugin/pythontex/pythontexInOut.pdf
http://www.simuline.eu/LatexMavenPlugin/pythontex/pythontexInOut.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/useBeamerPres.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/useBeamerHandout.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/useBeamerHandout.pdf
http://www.simuline.eu/LatexMavenPlugin/latex/latexEngines.pdf
http://www.simuline.eu/LatexMavenPlugin/latex/latexEngines.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/productLeaflet.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/productLeaflet.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/letter.pdf
http://www.simuline.eu/LatexMavenPlugin/docClasses/letter.pdf
http://absatzen.de/
https://github.com/jschrod/xindy.ctan/blob/master/doc/xindy.pdf
https://github.com/jschrod/xindy.ctan/blob/master/doc/xindy.pdf

187

[TAK+14] Kresten Krab Thorup, Per Abrahamsen, David Kastrup, et al. AUCTEX A sophisti-
cated TEX environment for Emacs. Free Software Foundation, Inc., version 11.88
edition, 10 2014.

[Tal24a] N. L.C. Talbot. The glossaries package v4.54: a guide for beginners. https:
//www.ctan.org/pkg/glossaries?lang=de, 4 2024.

[Tal24b] N. L.C. Talbot. User Manual for glossaries.sty v4.54. dickimaw-books, https:
//www.ctan.org/pkg/glossaries?lang=de, 4 2024.

[Tan23] T. Tantau. TikZ and PGF Manual for Version 3.1.10. Institut für Theoretische
Informatik, Universität zu Lübeck, Lübeck, Germany, 1 2023. https://mirror.p
hysik.tu-berlin.de/pub/CTAN/graphics/pgf/base/doc/pgfmanual.pdf.

[Tan24] Takuji Tanaka. upmendex manual pages. https://ctan.org/pkg/upmendex/
https://github.com/t-tk/upmendex-package, 7 2024. Version 1.09, contact:
ttk(at)t-lab.poal.ne.jp.

[Tea00] The LATEX3Project Team. LATEX2ε font selection, 9 2000.

[Tea20] The Dvipdfmx Project Team. Dvipdfmx User’s Manual, 6 2020. Version 0.12.4b.

[Tea22] The LATEX Project Team. The iftex package. https://github.com/latex3/iftex,
v1.0f edition, 2 2022.

[Thi22] Jens T. Berger Thielemann. ChkTEX v1.7.8. Jens Berger, Spektrumvn.
4, N-0666 Oslo, jensthi@ifi.uio.no, 10 2022. New maintainer: Ivan Andrus,
darthandrus@gmail.com.

[TW12] Julian Ohrt Thomas Willwacher. Tikzedit a semi-graphical Tikz editor. http:
//www.tikzedt.org/, t.willwacher@gmail.com, 2012.

[TWM23] T. Tantau, J. Wright, and V. Miletić. The BEAMER class. joseph.wright@morn-
ingstar2.co.uk, 5 2023.

[Ume10] Hideo Umeki. The geometry package. latexgeometry@gmail.com, v5.6 edition, 9
2010.

[Vos24] H. Voss. Program and package xindex. https://ctan.org/pkg/xindex https:
//gitlab.com/hvoss49/xindex, 9 2024. Version 0.61, contact: hvoss@tug.org.

[WK16] Thomas Williams and Colin Kelley. gnuplot 5.0 – An Interactive Plotting Program.
http://www.gnuplot.info/docs_5.0/gnuplot.pdf, 1 2016. Version 5.0.2.

[WK23] Thomas Williams and Colin Kelley. gnuplot 6.0 – An Interactive Plotting Program.
http://www.gnuplot.info/docs_6.0/Gnuplot_6.pdf, 12 2023. Version 6.0.

[WP10] P. Wilson and H. Press. The tocbibind package. latex-project, https://www.ctan.o
rg/pkg/tocbibind?lang=de, v1.5k edition, 10 2010.

[Zan10] Timothy Van Zandt. The ’fancyvrb’ package Fancy Verbatims in LATEX. Princeton
University, tvz@Princeton.EDU, v2.8 edition, 5 2010.

https://www.ctan.org/pkg/glossaries?lang=de
https://www.ctan.org/pkg/glossaries?lang=de
https://www.ctan.org/pkg/glossaries?lang=de
https://www.ctan.org/pkg/glossaries?lang=de
https://mirror.physik.tu-berlin.de/pub/CTAN/graphics/pgf/base/doc/pgfmanual.pdf
https://mirror.physik.tu-berlin.de/pub/CTAN/graphics/pgf/base/doc/pgfmanual.pdf
https://ctan.org/pkg/upmendex/
https://github.com/t-tk/upmendex-package
https://github.com/latex3/iftex
http://www.tikzedt.org/
http://www.tikzedt.org/
https://ctan.org/pkg/xindex
https://gitlab.com/hvoss49/xindex
https://gitlab.com/hvoss49/xindex
http://www.gnuplot.info/docs_5.0/gnuplot.pdf
http://www.gnuplot.info/docs_6.0/Gnuplot_6.pdf
https://www.ctan.org/pkg/tocbibind?lang=de
https://www.ctan.org/pkg/tocbibind?lang=de

Chapter 12

General Index

LATEX main file, 28
TEX source directory, 27

ant-task, 14, 15, 25, 26
auctex, 60

base directory, 27

java, 15

KOMA, 29

opening, 28
orchestration, 53

preferred usage, 177

special-flag, 70
svg, 16

table of contents, 91, 93

188

Chapter 13

Tools related with LaTeX

ant, 15

biber, 91
bibtex, 17, 91, 92, 99, 103
bibtex8, 91
bibtexu, 91

chktex, 17

depythontex, 17, 41, 89, 99–101
depythontexW, 100, 101
diff, 107, 154
diff-pdf, 154
diff-pdf-visually, 48, 154
dvipdfmx, 16

ebb, 66
exiftool, 109, 110, 154

fig2dev, 16, 53, 66, 68, 70, 72, 81, 122,
132

gnuplot, 16, 66, 81, 133

htlatex, 17

inkscape, 16, 65, 66, 82

latex2rtf, 17
latexmk, 9, 40–44, 48, 51, 53–59, 85, 97,

109–112, 125, 127, 128, 130, 144,
155, 178, 181

lualatex, 13, 17, 19, 28, 35, 44, 46, 50,
53–55, 57, 58, 68, 69, 79, 87, 99,
112, 121, 135, 136, 138, 140, 162,
173, 175, 177

makeglossaries, 17, 103, 144
makeindex, 17, 54, 92–95, 144
maven, see mvn
metapost, see mpost
mlbibtex, 91
mpost, 16, 66, 133
mvn, 15

ntlatex, 48, 109

odt2doc, 17

pdfinfo, 48, 109, 154
pdflatex, 17, 19, 35, 46, 59, 68, 69, 83,

87, 136, 140, 141, 175
pdftotext, 17
pythontex, 17, 41, 42, 88, 99–101, 104,

105
pythontexW, 38, 99, 100

splitindex, 17, 93, 95

touch, 54

upmendex, 92, 93

189

190 CHAPTER 13. TOOLS RELATED WITH LATEX

vmdiff, 48, 107, 109
vscode, 65, 170

xelatex, 17, 19, 35, 46, 47, 69, 87, 112,
123, 136, 137, 139, 140

xfig, 16, 59, 70, 82, 169
xindex, 92, 93
xindy, 17, 92, 144

Chapter 14

LaTeX Packages

amsmath, 19
amsmidx, 170
anyfontsize, 18

babel, 19, 29, 30
biblatex, 88
bmpsize, 19, 66, 67, 83, 134
booktabs, 18, 61

csquotes, 29, 30

eepic, 33

fancyvrb, 19, 56
fix-cm, 18

geometry, 18, 31
glossaries, 17, 19, 96, 97, 104, 170, 173
glossaries-extra, 96, 170
graphicx, 19, 33, 47, 66–69, 71, 74, 79–81,

83, 137

hyperref, 17, 18, 31, 106, 108, 137, 173

iftex, 18
imakeidx, 170, 173
import, 19, 67, 71, 81
index, 170

listings, 19, 28, 43, 44, 46, 55, 56
longtable, 19, 106

luamplib, 44, 79

makeglossaries, 96, 103
makeidx, 17, 19, 93, 94, 173
microtype, 18
moreverb, 56
multind, 170

nag, 19, 30

pythontex, 17, 28, 34, 67, 68, 88, 89,
98–100

rerunfilecheck, 18, 42, 96, 102–106, 141,
143, 145, 173, 174

robustglossaries, 173
robustindex, 173

showframe, 18
showidx, 17, 19, 93
showlabels, 18
splitidx, 17, 93–95, 169
splitindex, 99
srcltx, 18, 130
svg, 34, 80, 81

tex4ht, 13, 46, 112, 115, 131
tikz, 33, 66, 68
tocbibind, 19, 91, 93
transparent, 19, 66, 67, 81

191

192 CHAPTER 14. LATEX PACKAGES

verbatim, 28

xcolor, 19, 67, 69, 71, 80, 81, 137

Chapter 15

LaTeX Commands

\bibcite, 91
\bibdata, 90
\bibitem, 91
\bibliography, 90, 91
\bibliographystyle, 90, 91
\bibstyle, 90
\bibtex, 67

\citation, 89, 90
\cite, 89–91

\documentclass, 28, 30, 31, 123, 126–130
\DocumentMetadata, 46, 129
\documentstyle, 28, 123, 128

\gls, 97

\IfFileExists, 55
\ifluatex, 19
\ifpdf, 18
\ifpdftex, 19
\iftutex, 19
\import, 56, 70, 71, 81
\include, 28, 52, 89
\includegraphics, 33, 66–70, 72, 74,

79, 80, 83
\includeonly, 52, 53
\index, 92, 94, 97
\indexentry, 92, 94, 95, 166

\input, 13, 28, 33, 34, 52, 67, 70, 72, 81,
90, 91, 93, 129, 135

\inputmpcode, 46, 79
\inputNoChk, 46
\item, 93

\listinputlisting, 43
\lstinputlisting, 56
\lstlistoflistings, 44

\makeglossaries, 97
\makeindex, 92, 97

\Needs, 113
\newbool, 30, 129
\newglossary, 170
\newindex, 94

\PassOptionsToPackage, 31, 40, 129
\printindex, 93, 94
\pyc, 101

\RequireLuaTeX, 19
\RequirePackage, 30, 128, 129

\see, 93
\setbool, 30, 129
\setMinorVersionPdf, 46
\setpythontexoutputdir, 100
\setpythontexworkingdir, 100

193

194 CHAPTER 15. LATEX COMMANDS

\sindex, 94
\special, 112
\subitem, 93

\texttt, 46, 57
\textttNoChk, 46, 57
\today, 47

\usepackage, 29, 97, 128, 129

Glossary

LATEX engine A compiler for LATEX files. 13, 195
LATEX main file A LATEX file intended to be compiled by a LATEX engine.. 3, 13,
17, 28

195

196 Glossary

Acronyms

AUX auxiliary file: input and output file for LATEX engines; read also e.g. by
bibtex. 88

BBL bibliography for a latex document in latex format: written by the bibtex
tool and read by LATEX processors. 91
BCF bibliography content file (?): generated by LATEX engines if used with package
biblatex. 88
BLG Bibliography LoG file: for bibtex and related. 91
BST Bibliography Style File read by the bibtex tool. 91

DEPYTXC File containing information to replace code snippets in the TEX file
by the result of their evaluation; output format of LATEX engines with package
pythontex if loaded with option depythontex. 89, 146
DOC outdated document format for MS Word. 35
DOCX current document format for MS Word. 13, 14, 35, 85
DPLG depythontex log file: home-brewed since the original application does not
write log files. 146
DVI DeVice Independent; traditional output format of LATEX engines, today widely
replaced by PDF. 13, 18, 68, 85, 87, 112, 121, 198

EPS Encapsulated PostScript. 16, 33, 68, 77, 122

FIG native file format for xfig. 16, 34, 59, 67, 122
FLS FiLeS dependencies: list of files the according tex file depends on; output
format of LATEX engines if used with option -recorder. 69

GIF Graphics Interchange Format, allows also animations. 169
GLG makeglossaries log file. 144
GLO GLOssary file containing unsorted and multiple glossary entries; output
format of LATEX engines with package makeglossaries. 88, 103
GLS glossary file containing sorted, unified and formatted glossary entries; output
format of the makeglossaries tool read by LATEX engines. 88
GP GnuPlot file format. 67

197

198 Acronyms

HTML HyperText Markup Language. 13, 14, 17, 68, 85

IDX InDeX file containing unsorted and multiple index entries; output format of
LATEX engines with package makeindex or similar. 88, 92–95, 97
ILG Index LoG file:: for makeindex and related; content depends strongly on the
tool. 93–95
IND INDex file containing sorted, unified and formatted index entries, output
format of makeindex and xindy. 88, 93, 94
IST (make-)Index Style File: output format of LATEX engines if used with package
glossaries configured for makeindex. 88

JPG Graphics format developed by the Joint Photographic Experts Group. 33,
65, 66, 83

MP MetaPost: input format for the graphic program mpost. 16, 34, 78
MPS metapost’s postscript like output including text. 33, 66, 78
MPX metapost TEX output: texts. 78

ODT Open Document Text. 13, 14, 85
OUT contains bookmarks: input and output format of LATEX engines if used with
package hyperref, file ending seems naive. 89

PDF Portable Document Format. 13, 14, 16, 33, 83, 85, 87, 121
PLG pythontex log file: home-brewed since the original application does not write
log files. 145, 146
PNG Portable Network Graphics. 33, 65, 66, 77, 83, 113, 147, 169
PTX pdf/postscript TEX format; home-brewed. 68, 69
PYTXCODE Code file consisting mainly of code snippets from the TEX file;
output format of LATEX engines with package pythontex. 88, 145

SGML Standard Generalized Markup Language. 17
SVG Scalable Vector Graphics. 16, 34, 66, 67, 77, 80

TEX TEX the format, which may also be LATEX. 88

XDV eXtended Device Independent; an extension of the traditional output format
DVI of LATEX engines, today widely replaced by PDF. 18, 33, 35, 40, 42, 46, 48, 66,
68, 69, 83, 84, 87, 108, 121, 123, 124, 136, 139, 140, 166
XDY index style file for xindy: output format of LATEX engines if used with
package glossaries configured for xindy. 88
XHTML eXtensible HyperText Markup Language. 14
XML eXtensible Markup Language. 17

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Installation
	Prerequisites
	Setting up pom.xml for the maven plugin
	Basic setup
	Deviating from default settings
	Executions

	Setting build.xml for the ant task
	Installation from source

	Usage of Plugin and Task
	The source files and their directories
	LaTeX main files and other latex files
	On openings neglecting (magic) comments
	Magic comments

	Source graphic files
	Created files in the TeX source directory

	Exporting in various formats and checking sources
	Checking versions of converters
	Logging of errors and warnings
	Injection of files
	The configuration files .latexmkrc and .chktexrc
	A generic header file header.tex
	A header file for graphics via package graphicx
	A header file to suppress meta-info for PDF files
	An installation script for VS Code Extensions
	Scripts in conjunction with reproducibility
	Script (de)pythontexW patching (de)pythontex

	Development of documents
	Editors, viewers and LaTeX
	The build tool latexmk
	Differences of latexmk with this LaTeX builder
	How latexmk is integrated

	Checks in the context of document development
	Goal Graphics grp
	Goal Clear clr
	Installation and Configuration
	Miscellaneous

	Goals in the maven lifecycle
	The ant-tasks

	Graphics and Preprocessing
	Graphic formats and packages supporting them
	Target formats for preprocessing
	Conversion of fig-files
	Conversion of gnuplot-files
	Inclusion of MetaPost files
	Inclusion of SVG-files
	Pictures which are not transformed

	Processing of LaTeX Main Files
	Transforming LaTeX files into PDF files
	Bibliographies
	Indices
	Glossaries
	Including code via pythontex
	Running and rerunning auxiliary programs
	The interface between LaTeX and auxiliary programs
	When running an auxiliary program
	Why rerunfilecheck is not used for auxiliary programs

	Rerunning the LaTeX processor
	Checking reproducibility
	Alternative build process with latexmk
	Creating hypertext
	Creating odt files
	Creating MS word files
	Creating plain text files

	Parameters resp. Settings
	Generalities on parameters
	General parameters
	The parameter patternLatexMainFile
	The parameter patternCreatedFromLatexMain

	Parameters for goals vrs and inj
	Parameters for graphical preprocessing
	The parameter metapostOptions
	The parameter svg2devOptions

	Parameters for the LaTeX-to-pdf Conversion
	The parameter latex2pdfOptions
	The parameter patternWarnLatex
	The parameter patternReRunLatex

	Parameters for creation of the bibliography
	Parameters for creation of the indices
	Parameters for creation of the Glossary
	Parameters for including code via pythontex
	Parameters for conversion LaTeX to HTML
	The parameter patternT4htOutputFiles

	Parameters for further conversions
	Parameters for the code checker chktex
	Parameters for ensuring reproducibility
	Parameters for latexmk and related

	Exceptions and Logging
	Exceptions
	Logging of warnings and errors

	Gaps
	Gaps in graphics
	Build mechanism
	Indices
	Glossaries

	Bugs
	Preferred usage, Test Concepts and Tests
	Bibliography
	General Index
	Tools related with LaTeX
	LaTeX Packages
	LaTeX Commands
	Glossary
	Acronyms

